Skip to content

A library of density matrix embedding theory (DMET).

License

Notifications You must be signed in to change notification settings

zhcui/libdmet_preview

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

68 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

libDMET

Build Status License: GPL v3

A library of density matrix embedding theory (DMET) for lattice models and realistic solids.

Installation

  • Prerequisites (will be automatically installed if not yet present.)

  • Just call

pip install git+https://github.com/gkclab/libdmet_preview.git@main
  • or clone the repository and execute in its main directory
pip install .
  • Extensions
    • Wannier90: optional, for wannier functions as local orbitals.
    • Block2: optional, for DMRG solver.
    • Stackblock: optional, for DMRG solver.
    • Arrow: optional, for SHCI solver.

Reference

The following papers should be cited in publications utilizing the libDMET program package:

Zhi-Hao Cui, Tianyu Zhu, Garnet Kin-Lic Chan, Efficient Implementation of Ab Initio Quantum Embedding in Periodic Systems: Density Matrix Embedding Theory, J. Chem. Theory Comput. 2020, 16, 1, 119-129.

Tianyu Zhu, Zhi-Hao Cui, Garnet Kin-Lic Chan, Efficient Formulation of Ab Initio Quantum Embedding in Periodic Systems: Dynamical Mean-Field Theory, J. Chem. Theory Comput. 2020, 16, 1, 141-153.

If you use the quantum chemistry formulation for superconductivity, please cite:

Zhi-Hao Cui, Junjie Yang, Johannes Tölle, Hong-Zhou Ye, Huanchen Zhai, Raehyun Kim, Xing Zhang, Lin Lin, Timothy C. Berkelbach, Garnet Kin-Lic Chan, Ab initio quantum many-body description of superconducting trends in the cuprates, arXiv preprint arXiv:2306.16561

Bug reports and feature requests

Please submit tickets on the issues page.

About

A library of density matrix embedding theory (DMET).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.9%
  • Shell 0.1%