Skip to content

zhenglab/HarmonyTransformer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Transformer for Image Harmonization and Beyond [Paper]

Zonghui Guo, Zhaorui Gu, Bing Zheng, Junyu Dong, Haiyong Zheng
IEEE Transactions on Pattern Analysis and Machine Intelligence

Here we provide the PyTorch implementation and pre-trained model of our latest version, if you require the code of our previous ICCV version ("Image Harmonization With Transformer"), please click the released version.

Prerequisites

  • Linux
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Train/Test

  • Download iHarmony4 dataset.

  • Train our HT+ model (FC-TRE-DeCNN):

CUDA_VISIBLE_DEVICES=0 python train.py --model ht --tr_r_enc_head x --tr_r_enc_layers x --name experiment_name --dataset_root <dataset_dir> --dataset_name IHD --batch_size xx --init_port xxxx
  • Test our HT+ model (FC-TRE-DeCNN):
CUDA_VISIBLE_DEVICES=0 python test.py --model ht --tr_r_enc_head x --tr_r_enc_layers x --name experiment_name --dataset_root <dataset_dir> --dataset_name IHD --batch_size xx --init_port xxxx
  • Train our DHT+ model:
CUDA_VISIBLE_DEVICES=0 python train.py --model dht --light_use_mask --tr_r_enc_head x --tr_r_enc_layers x  --tr_i_dec_head x --tr_i_dec_layers x --tr_l_dec_head x --tr_l_dec_layers x --name DHT_experiment_name --dataset_root <dataset_dir> --dataset_name IHD --batch_size xx --init_port xxxx
  • Test our DHT+ model:
CUDA_VISIBLE_DEVICES=0 python test.py --model dht --light_use_mask --tr_r_enc_head x --tr_r_enc_layers x  --tr_i_dec_head x --tr_i_dec_layers x --tr_l_dec_head x --tr_l_dec_layers x --name DHT_experiment_name --dataset_root <dataset_dir> --dataset_name IHD --batch_size xx --init_port xxxx

Apply a pre-trained model

  • Download pre-trained models from Google Drive or BaiduCloud (access code: vmrg), and put latest_net_G.pth in the directory checkpoints/HT_2H9L_allihd or checkpoints/DHT_2H9L_allihd. Run:
# Our HT model
CUDA_VISIBLE_DEVICES=0 python test.py --model ht --tr_r_enc_head 2 --tr_r_enc_layers 9 --name HT_2H9L_allihd --dataset_root <dataset_dir> --dataset_name IHD --batch_size xx --init_port xxxx
# Our CNN-DHT model
CUDA_VISIBLE_DEVICES=0 python test.py --model dht --light_use_mask --tr_r_enc_head 2 --tr_r_enc_layers 9  --tr_i_dec_head 2 --tr_i_dec_layers 9 --tr_l_dec_head 2 --tr_l_dec_layers 9 --name DHT_2H9L_allihd --dataset_root <dataset_dir> --dataset_name IHD --batch_size xx --init_port xxxx

Evaluation

We provide the code in ih_evaluation.py. Run:

CUDA_VISIBLE_DEVICES=0 python evaluation/ih_evaluation.py --dataroot <dataset_dir> --result_root  results/experiment_name/test_latest/images/ --evaluation_type our --dataset_name ALL

Real composite image harmonnization

More compared results can be found at Google Drive or BaduCloud (access code: n37b).

Bibtex

If you use this code for your research, please cite our papers.

@article{guo2022transformer,
  title={Transformer for Image Harmonization and Beyond},
  author={Guo, Zonghui and Gu, Zhaorui and Zheng, Bing and Dong, Junyu and Zheng, Haiyong},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2022},
  publisher={IEEE}
}

@InProceedings{Guo_2021_ICCV,
    author    = {Guo, Zonghui and Guo, Dongsheng and Zheng, Haiyong and Gu, Zhaorui and Zheng, Bing and Dong, Junyu},
    title     = {Image Harmonization With Transformer},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {14870-14879}
}

Acknowledgement

For some of the data modules and model functions used in this source code, we need to acknowledge the repositories of DoveNet, CycleGAN, SpiralNet and IntrinsicHarmony.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages