Unofficial implementation of the demo in "Reasons for the Superiority of Stochastic Estimators over Deterministic Ones: Robustness, Consistency and Perceptual Quality".
@article{sto_vs_det,
title={Reasons for the Superiority of Stochastic Estimators over Deterministic Ones: Robustness, Consistency and Perceptual Quality},
author={Ohayon, Guy and Adrai, Theo and Elad, Michael and Michaeli, Tomer},
journal={arXiv preprint arXiv:2211.08944},
year={2022}
}
- Training:
python train_gan.py --stochastic --robust
- Inference:
python infer_gan.py --stochastic --robust
- Visualization:
python vis_pred.py --stochastic --robust -n #NUM_POINTS
Note: --stochastic --robust are optional. --stochastic means using stochastic algorithm, and --robust means using robust loss.
We use some codes from PyTorch-GAN.