Easily load U.S. Climate Reference Network (USCRN) data.
With uscrn
, fetching and loading years of data for all USCRN sites1 takes just one line of code2.
Example:
import uscrn
df = uscrn.get_data(2019, "hourly", n_jobs=6) # pandas.DataFrame
ds = uscrn.to_xarray(df) # xarray.Dataset, with soil depth dimension if applicable (hourly, daily)
Both df
(pandas) and ds
(xarray) include dataset and variable metadata.
For df
, these are in df.attrs
and can be preserved by
writing to Parquet with the PyArrow engine3 with
pandas v2.1+.
df.to_parquet("uscrn_2019_hourly.parquet", engine="pyarrow")
Conda install example4:
conda create -n crn -c conda-forge python=3.10 joblib numpy pandas pyyaml requests xarray pyarrow netcdf4
conda activate crn
pip install --no-deps uscrn
Footnotes
-
Use
uscrn.load_meta()
to load the site metadata table. ↩ -
Not counting the
import
statement... ↩ -
Or the fastparquet engine with fastparquet v2024.2.0+. ↩
-
uscrn
is not yet on conda-forge. ↩