Skip to content

Commit

Permalink
edit math/geometry/4
Browse files Browse the repository at this point in the history
  • Loading branch information
zmx0142857 committed Apr 25, 2024
1 parent fc023c9 commit 82c91e4
Show file tree
Hide file tree
Showing 8 changed files with 63 additions and 3 deletions.
2 changes: 1 addition & 1 deletion js/toc.js
Original file line number Diff line number Diff line change
Expand Up @@ -194,7 +194,7 @@ var tocData = {
articles: [
{ title: '五组公理', src: 'geometry/1.html' },
{ title: '三角形, 四边形', src: 'geometry/3.html', date: '2022-02-14' },
{ title: '圆', src: 'geometry/4.html', date: '2023-07-31' },
{ title: '圆', src: 'geometry/4.html', date: '2024-04-25' },
{ title: '抛物线', src: 'geometry/5.html' },
{ title: '射影几何', src: 'geometry/10.html', date: '2023-07-11' },
]
Expand Down
2 changes: 1 addition & 1 deletion math/geometry/3.html
Original file line number Diff line number Diff line change
Expand Up @@ -1210,7 +1210,7 @@ <h2>四边形</h2>
<b>等差幂线定理</b>
<li>四面体的一组对边垂直当且仅当另外两组对边的平方和相等;</li>
<li>平面上四边形的对角线相互垂直当且仅当两组对边的平方和相等.</li>
</p>
</ol>

<p class="proof">
任取空间中一点 `O`, 分别用 `bm a, bm b, bm c, bm d` 记
Expand Down
62 changes: 61 additions & 1 deletion math/geometry/4.html
Original file line number Diff line number Diff line change
Expand Up @@ -7,10 +7,70 @@
</head>
<body>

<h2>圆的切线</h2>

<p class="construction">
过不在圆上的一点 `P`, 只用直尺作出 `P` 关于圆的极线.
如果 `P` 在圆外, 连接 `P` 到极线与圆的交点就得到两切线.
</p>

<p class="solution">
过 `P` 作圆的两割线, 交圆于 `A, B, C, D` 四点. 这四点确定一个完全四边形, 其中一组对边交于 `P`.
设另外两组对边交于 `E, F`, 则 `EF` 就是极线.
<span class="img md">
<img src="../img/circle-polar.png">
</span>
</p>

<p class="construction">
[来自群友 幂零群、太阳花] [圆规x2, 直尺x1] 过圆上一点 `P` 作切线.
</p>

<ol class="solution enum">
在圆 `O` 上任取一点 `A`, 使得 `O, A, P` 不共线.
作圆 `AP`, 交圆 `O` 于 `P, B`; 作圆 `PB`, 交圆 `A` 于 `B, C`.
<li>
下证 `CP` 就是圆 `O` 的切线. 这只需说明 `/_ CPO = 90^@`:
连接 `PA, PB`, `/_ CPO` 被分为三个角. 我们证明这三个角之和等于 `90^@`.
<ol>
<li>
`triangle PAB S= triangle PAC (SSS)`, 所以 `PA` 平分 `/_BPC`. 设 `/_ BPC = 2alpha`.
</li>
<li>
`AB = AP` 所以 `/_ ABP = /_ APB = alpha`.
</li>
<li>
作圆 `O` 的直径 `PD`. `ABDP` 四点共圆, 所以 `/_ ADP = /_ ABP = alpha`.
由于 `DP` 是直径, 所以 `/_ ADP + /_APD = 90^@`.
于是 `/_ CPO = /_APC + /_APD = alpha + /_ APD = /_ ADP + /_ APD = 90^@`.
</li>
</ol>
<span class="img md">
<img src="../img/circle-tangent1.png">
</span>
</li>
<li>
进一步设圆 `A` 交直线 `OP` 于 `P, E`, 圆 `P` 交圆 `O` 于 `B, F`. 下证 `C, A, E, F` 四点共线.
<ol>
<li>由 1. 知 `/_ CPE = 90^@` 所以 `CE` 是圆 `A` 直径, 这说明 `C, A, E` 共线.</li>
<li>
又 `triangle BPO S= triangle FPO (SSS)`, 所以 `/_ BAF = /_ BPF = 2 /_ BPO`.
又在圆 `A` 中 `/_ BAC = 2/_ BPC`, 所以 `/_ BAF + /_ BAC = 2 (/_BPO + /_BPC) = 2 /_ CPO = 180^@`.
即 `C, A, F` 共线.
</li>
</ol>
<span class="img md">
<img src="../img/circle-tangent2.png">
</span>
</li>
</ol>

<h2>阿氏圆与反演</h2>

<p class="theorem">
<b>Apollonius 圆 (阿氏圆)</b>
平面上到两定点距离之比为常数 `k` (`k gt 0`, `k != 1`) 的点的轨迹为圆.
<span class="img md">
<span class="img sm">
<img src="../img/apollonius-circle.svg">
</span>
</p>
Expand Down
Binary file added math/img/circle-polar.ggb
Binary file not shown.
Binary file added math/img/circle-polar.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added math/img/circle-tangent.ggb
Binary file not shown.
Binary file added math/img/circle-tangent1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added math/img/circle-tangent2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

0 comments on commit 82c91e4

Please sign in to comment.