This repository provides a PyTorch implementation of MTGFlow (Paper
), which is the unsupervised anomaly detection and localization method.
This repository is based on GANF
.
- python==3.8.5
- pytorch==1.7.1
- numpy==1.19.2
- torchvision==1.5
- scipy==1.6.1
- scikit-learn==0.24.1
- scikit-image==0.18.1
- matplotlib== 3.3.4
- pillow == 7.2.0
pip install -r requirements.txt
We test our method for five public datasets, e.g., SWaT
, WADI
, PSM
, MSL
, and SMD
.
mkdir Dataset
cd Dataset
mkdir input
Download the dataset in Data/input
.
- train for MITGFlow For example, training for WADI
sh runners/run_WADI.sh
- train for
DeepSVDD
,DeepSAD
,DROCC
, andALOCC
.
python3 train_other_model.py --name SWaT --model DeepSVDD
- train for
USAD
andDAGMM
We report the results by the implementations in the following links:
We provide the pretained model of MTGFlow.
For example, testing for WADI
sh runners/run_WADI_test.sh
If you find this paper and repository useful, please cite our paper.
@inproceedings{zhou2023detecting,
title={Detecting Multivariate Time Series Anomalies with Zero Known Label},
author={Zhou, Qihang and Chen, Jiming and Liu, Haoyu and He, Shibo and Meng, Wenchao},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={37},
number={4},
pages={4963--4971},
year={2023}
}
@article{zhou2024label,
title={Label-Free Multivariate Time Series Anomaly Detection},
author={Zhou, Qihang and He, Shibo and Liu, Haoyu and Chen, Jiming and Meng, Wenchao},
journal={IEEE Transactions on Knowledge and Data Engineering},
year={2024},
publisher={IEEE}
}