Skip to content

Simple pytorch classification baselines for MNIST, CIFAR and ImageNet

Notifications You must be signed in to change notification settings

zzzxxxttt/pytorch_simple_classification_baselines

Repository files navigation

Pytorch simple classification baselines

This repository contains simple pytorch version of LeNet-5(MNIST), ResNet(CIFAR, ImageNet), AlexNet(ImageNet), VGG-16(CIFAR, ImageNet) baselines. There are both nn.DataParallel and nn.parallel.DistributedDataParallel version for multi GPU training, I highly recommand using nn.parallel.DistributedDataParallel since it's considerably faster than using nn.DataParallel.

Requirements:

  • python>=3.5
  • pytorch>=0.4.1(>=1.1.0 for DistributedDataParallel version)
  • tensorboardX(optional)

Train

single GPU or multi GPU using nn.DataParallel

  • python mnist_train_eval.py
  • python cifar_train_eval.py
  • python imgnet_train_eval.py

multi GPU using nn.parallel.DistributedDataParallel

  • python -m torch.distributed.launch --nproc_per_node 2 cifar_train_eval.py --dist --gpus 0,1
  • python -m torch.distributed.launch --nproc_per_node 2 imgnet_train_eval.py --dist --gpus 0,1

Results:

MNIST:

Model Accuracy
LeNet-5 99.26%

CIFAR-10:

Model Accuracy
ResNet-20 92.09%
ResNet-56 93.68%
VGG-16 93.99%

ImageNet2012:

Model Top-1 Accuracy Top-5 Accuracy
ResNet-18 69.67% 89.29%

About

Simple pytorch classification baselines for MNIST, CIFAR and ImageNet

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages