Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
The proposed implementation of a genetic algorithm for hyper optimization. Even if genetic optimization might be costly for CNN, the applications in numeric analysis or Design of Experiment (DoE) make it still interesting. Fixes: keras-team#47 Ref: 1. [Vishwakarma G, et al Towards Autonomous Machine Learning in Chemistry via Evolutionary Algorithms. **ChemRxiv.**](https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/60c7445a337d6c2849e26d98/original/towards-autonomous-machine-learning-in-chemistry-via-evolutionary-algorithms.pdf) 2. [Rosanna Nichols et al 2019 _Quantum Sci. Technol._ **4** 045012](https://iopscience.iop.org/article/10.1088/2058-9565/ab4d89/meta?casa_token=db7uZRqRMEAAAAAA:fRO9qB25dAkeoskS6MMyzpZw2jSiMkpsN4zA_k6lheWUXaSUU8fPS-JPMoNFcIl9tka4OPCG5AtDtiM)
- Loading branch information