Skip to content

Latest commit

 

History

History

chapter3_Image-Classification

GitHub 微信公众号 知乎 B站 CSDN

第 3 章 图像分类


点击每个章节的超链接可查看对应章节,

图像分类

目标:这一章我们将介绍图像分类问题。所谓图像分类问题,就是已有固定的分类标签集合,然后对于输入的图像,从分类标签集合中找出一个分类标签,最后把分类标签分配给该输入图像。虽然看起来挺简单的,但这可是计算机视觉领域的核心问题之一,并且有着各种各样的实际应用。在后面的课程中,我们可以看到计算机视觉领域中很多看似不同的问题(比如物体检测和分割),都可以被归结为图像分类问题。

例子:以下图为例,图像分类模型读取该图片,并生成该图片属于集合 {cat, dog, hat, mug}中各个标签的概率。需要注意的是,对于计算机来说,图像是一个由数字组成的巨大的3维数组。在这个例子中,猫的图像大小是宽248像素,高400像素,有3个颜色通道,分别是红、绿和蓝(简称RGB)。如此,该图像就包含了248X400X3=297600个数字,每个数字都是在范围0-255之间的整型,其中0表示全黑,255表示全白。我们的任务就是把这些上百万的数字变成一个简单的标签,比如“猫”。

image

图3.0 图像分类的任务,就是对于一个给定的图像,预测它属于的那个分类标签(或者给出属于一系列不同标签的可能性)。图像是3维数组,数组元素是取值范围从0到255的整数。数组的尺寸是宽度x高度x3,其中这个3代表的是红、绿和蓝3个颜色通道。


ENJOY!



作者: 张伟 (Charmve)

日期: 2021/06/13