Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DawnVIR Driver #566

Merged
merged 14 commits into from
Dec 14, 2023
2 changes: 2 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ __pycache__/
# Distribution / packaging
.Python
build/
docs/
develop-eggs/
dist/
downloads/
Expand Down Expand Up @@ -222,3 +223,4 @@ dmypy.json
*.CUB
*.img
*.IMG
print.prt
318 changes: 315 additions & 3 deletions ale/drivers/dawn_drivers.py
Original file line number Diff line number Diff line change
@@ -1,22 +1,31 @@
import pvl
import re
import spiceypy as spice
import os
import math
import numpy as np

from glob import glob
from scipy.interpolate import CubicSpline

import ale
from ale.base import Driver
from ale.base.label_isis import IsisLabel
from ale.base.data_naif import NaifSpice
from ale.base.data_isis import IsisSpice
from ale.base.label_pds3 import Pds3Label
from ale.base.type_distortion import NoDistortion
from ale.base.type_sensor import Framer
from ale.base.type_sensor import Framer, LineScanner
from ale.base.data_isis import read_table_data
from ale.base.data_isis import parse_table
from ale.transformation import TimeDependentRotation
from ale.transformation import ConstantRotation

ID_LOOKUP = {
"FC1" : "DAWN_FC1",
"FC2" : "DAWN_FC2"
}

degs_per_rad = 57.2957795

class DawnFcPds3NaifSpiceDriver(Framer, Pds3Label, NaifSpice, Driver):
"""
Dawn driver for generating an ISD from a Dawn PDS3 image.
Expand Down Expand Up @@ -393,3 +402,306 @@ def ephemeris_center_time(self):
center ephemeris time
"""
return self.ephemeris_start_time + (self.exposure_duration_ms / 2.0)


class DawnVirIsisLabelNaifSpiceDriver(LineScanner, IsisLabel, NaifSpice, NoDistortion, Driver):
@property
def instrument_id(self):
"""
Returns the ID of the instrument

Returns
-------
: str
Name of the instrument
"""
lookup_table = {'VIR': 'Visual and Infrared Spectrometer'}
return lookup_table[super().instrument_id]

@property
def sensor_name(self):
"""
Returns the name of the instrument

Returns
-------
: str
Name of the sensor
"""
return self.label["IsisCube"]["Instrument"]["InstrumentId"]

@property
def line_exposure_duration(self):
"""
The exposure duration of the image, in seconds

Returns
-------
: float
Exposure duration in seconds
"""
return self.label["IsisCube"]["Instrument"]["FrameParameter"][0]

@property
def focal_length(self):
return float(spice.gdpool('INS{}_FOCAL_LENGTH'.format(self.ikid), 0, 1)[0])

@property
def detector_center_sample(self):
"""
Returns the center detector sample. Expects ikid to be defined. This should
be an integer containing the Naif Id code of the instrument.

Returns
-------
: float
Detector sample of the principal point
"""
return super().detector_center_sample - 0.5

@property
def ikid(self):
"""
Returns the Naif ID code for the instrument
Expects the instrument_id to be defined. This must be a string containing
the short name of the instrument.

Returns
-------
: int
Naif ID used to for identifying the instrument in Spice kernels
"""
lookup_table = {
'VIS': -203211,
"IR": -203213
}
return lookup_table[self.label["IsisCube"]["Instrument"]["ChannelId"]]

@property
def sensor_frame_id(self):
"""
Returns the FRAME_DAWN_VIR_{VIS/IR}_ZERO Naif ID code if there are no associated articulation kernels.
Otherwise the original Naif ID code is returned.
Returns
-------
: int
Naif ID code for the sensor frame
"""
if self.has_articulation_kernel:
lookup_table = {
'VIS': -203211,
"IR": -203213
}
else:
lookup_table = {
'VIS': -203221,
"IR": -203223
}
return lookup_table[self.label["IsisCube"]["Instrument"]["ChannelId"]]

@property
def housekeeping_table(self):
"""
This table named, "VIRHouseKeeping", contains four fields: ScetTimeClock, ShutterStatus,
MirrorSin, and MirrorCos. These fields contain the scan line time in SCLK, status of
shutter - open, closed (dark), sine and cosine of the scan mirror, respectively.

Returns
-------
: dict
Dictionary with ScetTimeClock, ShutterStatus, MirrorSin, and MirrorCos
"""
isis_bytes = read_table_data(self.label['Table'], self._file)
return parse_table(self.label['Table'], isis_bytes)

@property
def line_scan_rate(self):
"""
Returns
-------
: list
Start lines
: list
Line times
: list
Exposure durations
"""
line_times = []
start_lines = []
exposure_durations = []

line_no = 0.5

for line_midtime in self.hk_ephemeris_time:
if not self.is_calibrated:
line_times.append(line_midtime - (self.line_exposure_duration / 2.0) - self.center_ephemeris_time)
start_lines.append(line_no)
exposure_durations.append(self.label["IsisCube"]["Instrument"]["FrameParameter"][2])
line_no += 1

line_times.append(line_times[-1] + self.label["IsisCube"]["Instrument"]["FrameParameter"][2])
start_lines.append(line_no)
exposure_durations.append(self.label["IsisCube"]["Instrument"]["FrameParameter"][2])

return start_lines, line_times, exposure_durations

@property
def sensor_model_version(self):
"""
Returns
-------
: int
ISIS sensor model version
"""
return 1

@property
def optical_angles(self):
hk_dict = self.housekeeping_table

opt_angles = []
x = np.array([])
y = np.array([])
for index, mirror_sin in enumerate(hk_dict["MirrorSin"]):
shutter_status = hk_dict["ShutterStatus"][index].lower().replace(" ", "")
is_dark = (shutter_status == "closed")

mirror_cos = hk_dict["MirrorCos"][index]

scan_elec_deg = math.atan(mirror_sin/mirror_cos) * degs_per_rad
opt_ang = ((scan_elec_deg - 3.7996979) * 0.25/0.257812) / 1000

if not is_dark:
x = np.append(x, index + 1)
y = np.append(y, opt_ang)

if not self.is_calibrated:
opt_angles.append(opt_ang)

cs = CubicSpline(x, y, extrapolate="periodic")

for i, opt_ang in enumerate(opt_angles):
shutter_status = hk_dict["ShutterStatus"][i].lower().replace(" ", "")
is_dark = (shutter_status == "closed")

if (is_dark):
if (i == 0):
opt_angles[i] = opt_angles[i+1]
elif (i == len(opt_angles) - 1):
opt_angles[i] = opt_angles[i-1]
else:
opt_angles[i] = cs(i+1)

return opt_angles

@property
def hk_ephemeris_time(self):

line_times = []
scet_times = self.housekeeping_table["ScetTimeClock"]
for scet in scet_times:
line_midtime = spice.scs2e(self.spacecraft_id, scet)
line_times.append(line_midtime)

return line_times

@property
def ephemeris_start_time(self):
"""
Returns the starting ephemeris time of the image using the first et time from
the housekeeping table minus the line exposure duration / 2.

Returns
-------
: double
Starting ephemeris time of the image
"""
return self.hk_ephemeris_time[0] - (self.line_exposure_duration / 2)


@property
def ephemeris_stop_time(self):
"""
Returns the ephemeris stop time of the image using the last et time from
the housekeeping table plus the line exposure duration / 2.

Returns
-------
: double
Ephemeris stop time of the image
"""
return self.hk_ephemeris_time[-1] + (self.line_exposure_duration / 2)

@property
def center_ephemeris_time(self):
return self.hk_ephemeris_time[int(len(self.hk_ephemeris_time)/2)]

@property
def is_calibrated(self):
"""
Checks if image is calibrated.

Returns
-------
: bool
"""
return self.label['IsisCube']['Archive']['ProcessingLevelId'] > 2

@property
def has_articulation_kernel(self):
"""
Checks if articulation kernel exists in pool of kernels.

Returns
-------
: bool
"""
try:
regex = re.compile('.*dawn_vir_[0-9]{9}_[0-9]{1}.BC')
return any([re.match(regex, i) for i in self.kernels])
except ValueError:
return False

@property
def frame_chain(self):
frame_chain = super().frame_chain
frame_chain.add_edge(rotation=self.inst_pointing_rotation)
return frame_chain

@property
def inst_pointing_rotation(self):
"""
Returns a time dependent instrument pointing rotation for -203221 and -203223 sensor frame ids.

Returns
-------
: TimeDependentRotation
Instrument pointing rotation
"""
time_dep_quats = np.zeros((len(self.hk_ephemeris_time), 4))
avs = []

for i, time in enumerate(self.hk_ephemeris_time):
try:
state_matrix = spice.sxform("J2000", spice.frmnam(self.sensor_frame_id), time)
except:
rotation_matrix = spice.pxform("J2000", spice.frmnam(self.sensor_frame_id), time)
state_matrix = spice.rav2xf(rotation_matrix, [0, 0, 0])

opt_angle = self.optical_angles[i]

xform = spice.eul2xf([0, -opt_angle, 0, 0, 0, 0], 1, 2, 3)
xform2 = spice.mxmg(xform, state_matrix)

rot_mat, av = spice.xf2rav(xform2)
avs.append(av)

quat_from_rotation = spice.m2q(rot_mat)
time_dep_quats[i,:3] = quat_from_rotation[1:]
time_dep_quats[i, 3] = quat_from_rotation[0]

time_dep_rot = TimeDependentRotation(time_dep_quats, self.hk_ephemeris_time, 1, self.sensor_frame_id, av=avs)

return time_dep_rot


7 changes: 5 additions & 2 deletions ale/formatters/formatter.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,8 @@
import numpy as np
from scipy.interpolate import interp1d, BPoly

import spiceypy as spice

from networkx.algorithms.shortest_paths.generic import shortest_path

from ale.transformation import FrameChain
Expand Down Expand Up @@ -123,8 +125,8 @@ def to_isd(driver):

# Reverse the frame order because ISIS orders frames as
# (destination, intermediate, ..., intermediate, source)
instrument_pointing['time_dependent_frames'] = shortest_path(frame_chain, destination_frame, J2000)
time_dependent_rotation = frame_chain.compute_rotation(J2000, destination_frame)
instrument_pointing['time_dependent_frames'] = shortest_path(frame_chain, destination_frame, 1)
time_dependent_rotation = frame_chain.compute_rotation(1, destination_frame)
amystamile-usgs marked this conversation as resolved.
Show resolved Hide resolved
instrument_pointing['ck_table_start_time'] = time_dependent_rotation.times[0]
instrument_pointing['ck_table_end_time'] = time_dependent_rotation.times[-1]
instrument_pointing['ck_table_original_size'] = len(time_dependent_rotation.times)
Expand All @@ -140,6 +142,7 @@ def to_isd(driver):
instrument_pointing['constant_frames'] = shortest_path(frame_chain, sensor_frame, destination_frame)
constant_rotation = frame_chain.compute_rotation(destination_frame, sensor_frame)
instrument_pointing['constant_rotation'] = constant_rotation.rotation_matrix().flatten()

meta_data['instrument_pointing'] = instrument_pointing

# interior orientation
Expand Down
Loading
Loading