Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

remove some warnings in the test outputs #2143

Closed
wants to merge 4 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
95 changes: 47 additions & 48 deletions src/losses/functions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
"""
function mae(ŷ, y; agg = mean)
_check_sizes(ŷ, y)
agg(abs.(ŷ .- y))
return agg(abs.(ŷ .- y))
end

"""
Expand All @@ -44,7 +44,7 @@
"""
function mse(ŷ, y; agg = mean)
_check_sizes(ŷ, y)
agg(abs2.(ŷ .- y))
return agg(abs2.(ŷ .- y))
end

"""
Expand Down Expand Up @@ -93,12 +93,11 @@
```
"""
function huber_loss(ŷ, y; agg = mean, δ = ofeltype(ŷ, 1))
_check_sizes(ŷ, y)
abs_error = abs.(ŷ .- y)
#TODO: remove dropgrad when Zygote can handle this function with CuArrays
temp = Zygote.dropgrad(abs_error .< δ)
x = ofeltype(ŷ, 0.5)
agg(((abs_error .^ 2) .* temp) .* x .+ δ * (abs_error .- x * δ) .* (1 .- temp))
_check_sizes(ŷ, y)
abs_error = abs.(ŷ .- y)
temp = abs_error .< δ
x = ofeltype(ŷ, 0.5)
return agg(((abs_error .^ 2) .* temp) .* x .+ δ * (abs_error .- x * δ) .* (1 .- temp))
end

"""
Expand Down Expand Up @@ -153,17 +152,17 @@
```
"""
function label_smoothing(y::Union{AbstractArray,Number}, α::Number; dims::Int = 1)
if !(0 < α < 1)
throw(ArgumentError("α must be between 0 and 1"))
end
if dims == 0
y_smoothed = y .* (1 - α) .+ α*1//2
elseif dims == 1
y_smoothed = y .* (1 - α) .+ α* 1 // size(y, 1)
else
throw(ArgumentError("`dims` should be either 0 or 1"))
end
return y_smoothed
if !(0 < α < 1)
throw(ArgumentError("α must be between 0 and 1"))
end
if dims == 0
y_smoothed = y .* (1 - α) .+ α*1//2
elseif dims == 1
y_smoothed = y .* (1 - α) .+ α* 1 // size(y, 1)
else
throw(ArgumentError("`dims` should be either 0 or 1"))

Check warning on line 163 in src/losses/functions.jl

View check run for this annotation

Codecov / codecov/patch

src/losses/functions.jl#L163

Added line #L163 was not covered by tests
end
return y_smoothed
end

"""
Expand Down Expand Up @@ -224,7 +223,7 @@
"""
function crossentropy(ŷ, y; dims = 1, agg = mean, ϵ = epseltype(ŷ))
_check_sizes(ŷ, y)
agg(.-sum(xlogy.(y, ŷ .+ ϵ); dims = dims))
return agg(.-sum(xlogy.(y, ŷ .+ ϵ); dims))
end

"""
Expand Down Expand Up @@ -263,7 +262,7 @@
"""
function logitcrossentropy(ŷ, y; dims = 1, agg = mean)
_check_sizes(ŷ, y)
agg(.-sum(y .* logsoftmax(ŷ; dims = dims); dims = dims))
return agg(.-sum(y .* logsoftmax(ŷ; dims); dims))
end

"""
Expand Down Expand Up @@ -312,7 +311,7 @@
"""
function binarycrossentropy(ŷ, y; agg = mean, ϵ = epseltype(ŷ))
_check_sizes(ŷ, y)
agg(@.(-xlogy(y, ŷ + ϵ) - xlogy(1 - y, 1 - ŷ + ϵ)))
return agg(@.(-xlogy(y, ŷ + ϵ) - xlogy(1 - y, 1 - ŷ + ϵ)))
end

"""
Expand Down Expand Up @@ -342,7 +341,7 @@
"""
function logitbinarycrossentropy(ŷ, y; agg = mean)
_check_sizes(ŷ, y)
agg(@.((1 - y) * ŷ - logσ(ŷ)))
return agg(@.((1 - y) * ŷ - logσ(ŷ)))
end

"""
Expand Down Expand Up @@ -382,8 +381,8 @@
"""
function kldivergence(ŷ, y; dims = 1, agg = mean, ϵ = epseltype(ŷ))
_check_sizes(ŷ, y)
entropy = agg(sum(xlogx.(y), dims = dims))
cross_entropy = crossentropy(ŷ, y; dims = dims, agg = agg, ϵ = ϵ)
entropy = agg(sum(xlogx.(y); dims))
cross_entropy = crossentropy(ŷ, y; dims, agg, ϵ)
return entropy + cross_entropy
end

Expand All @@ -407,7 +406,7 @@
"""
function poisson_loss(ŷ, y; agg = mean)
_check_sizes(ŷ, y)
agg(ŷ .- xlogy.(y, ŷ))
return agg(ŷ .- xlogy.(y, ŷ))
end

"""
Expand Down Expand Up @@ -442,7 +441,7 @@
"""
function hinge_loss(ŷ, y; agg = mean)
_check_sizes(ŷ, y)
agg(max.(0, 1 .- ŷ .* y))
return agg(max.(0, 1 .- ŷ .* y))
end

"""
Expand Down Expand Up @@ -477,7 +476,7 @@
"""
function squared_hinge_loss(ŷ, y; agg = mean)
_check_sizes(ŷ, y)
agg((max.(0, 1 .- ŷ .* y)) .^ 2)
return agg((max.(0, 1 .- ŷ .* y)) .^ 2)
end

"""
Expand All @@ -503,7 +502,7 @@
"""
function dice_coeff_loss(ŷ, y; smooth = ofeltype(ŷ, 1.0))
_check_sizes(ŷ, y)
1 - (2 * sum(y .* ŷ) + smooth) / (sum(y .^ 2) + sum(ŷ .^ 2) + smooth) #TODO agg
return 1 - (2 * sum(y .* ŷ) + smooth) / (sum(y .^ 2) + sum(ŷ .^ 2) + smooth) #TODO agg
end

"""
Expand All @@ -518,11 +517,11 @@

"""
function tversky_loss(ŷ, y; β = ofeltype(ŷ, 0.7))
_check_sizes(ŷ, y)
#TODO add agg
num = sum(y .* ŷ) + 1
den = sum(y .* ŷ + β * (1 .- y) .* ŷ + (1 - β) * y .* (1 .- ŷ)) + 1
1 - num / den
_check_sizes(ŷ, y)
#TODO add agg
num = sum(y .* ŷ) + 1
den = sum(y .* ŷ + β * (1 .- y) .* ŷ + (1 - β) * y .* (1 .- ŷ)) + 1
return 1 - num / den
end

"""
Expand Down Expand Up @@ -554,13 +553,13 @@
```
"""
function binary_focal_loss(ŷ, y; agg=mean, γ=2, ϵ=epseltype(ŷ))
_check_sizes(ŷ, y)
ŷ = ŷ .+ ϵ
p_t = y .* ŷ + (1 .- y) .* (1 .- ŷ)
ce = -log.(p_t)
weight = (1 .- p_t) .^ γ
loss = weight .* ce
agg(loss)
_check_sizes(ŷ, y)
ŷ = ŷ .+ ϵ
p_t = y .* ŷ + (1 .- y) .* (1 .- ŷ)
ce = -log.(p_t)
weight = (1 .- p_t) .^ γ
loss = weight .* ce
return agg(loss)
end

"""
Expand Down Expand Up @@ -597,10 +596,10 @@
See also: [`Losses.binary_focal_loss`](@ref) for binary (not one-hot) labels

"""
function focal_loss(ŷ, y; dims=1, agg=mean, γ=2, ϵ=epseltype(ŷ))
_check_sizes(ŷ, y)
ŷ = ŷ .+ ϵ
agg(sum(@. -y * (1 - ŷ)^γ * log(ŷ); dims=dims))
function focal_loss(ŷ, y; dims = 1, agg = mean, γ = 2, ϵ = epseltype(ŷ))
_check_sizes(ŷ, y)
ŷ = ŷ .+ ϵ
return agg(sum(@. -y * (1 - ŷ)^γ * log(ŷ); dims))
end

"""
Expand All @@ -625,9 +624,9 @@
```
"""
function siamese_contrastive_loss(ŷ, y; agg = mean, margin::Real = 1)
_check_sizes(ŷ, y)
margin < 0 && throw(DomainError(margin, "Margin must be non-negative"))
return agg(@. (1 - y) * ŷ^2 + y * max(0, margin - ŷ)^2)
_check_sizes(ŷ, y)
margin < 0 && throw(DomainError(margin, "Margin must be non-negative"))
return agg(@. (1 - y) * ŷ^2 + y * max(0, margin - ŷ)^2)
end

```@meta
Expand Down
2 changes: 1 addition & 1 deletion test/runtests.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
using Flux
using Flux.Data
using Flux: DataLoader
using Flux: OneHotArray, OneHotMatrix, OneHotVector
using Flux: params
using Test
Expand Down
1 change: 1 addition & 0 deletions test/train.jl
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ using Random

# Test direct use of Optimisers.jl rule, only really OK for `Descent`:
@testset "without setup, $opt" for opt in [Descent(0.1), Optimisers.Descent(0.1), Optimisers.Adam()]
opt isa Optimisers.Adam && @info "should see a warning about discarded state"
loss(m, x) = Flux.Losses.mse(w*x, m.weight*x .+ m.bias)
model = (weight=copy(w2), bias=zeros(10), ignore=nothing)
@test loss(model, rand(10, 10)) > 1
Expand Down
12 changes: 0 additions & 12 deletions test/utils.jl
Original file line number Diff line number Diff line change
Expand Up @@ -385,18 +385,6 @@ end
@test_skip typeof(l1.bias) === typeof(l2.bias)
end

@testset "loadparams!" begin
pars(w, b) = [w, b]
pars(l) = pars(l.weight, l.bias)
pararray(m) = mapreduce(pars, vcat, m)
weights(m) = mapreduce(l -> [l.weight], vcat, m)
@testset "Bias type $bt" for bt in (Flux.zeros32, nobias)
m = dm(bt)
Flux.loadparams!(m, params(m))
testdense(m, bt)
end
end

@testset "loadmodel!(dst, src)" begin
m1 = Chain(Dense(10, 5), Dense(5, 2, relu))
m2 = Chain(Dense(10, 5), Dense(5, 2))
Expand Down