Skip to content

Official repository for paper "Versatile Offline Imitation from Observations and Examples via Regularized State-Occupancy Matching" (ICML 2022)

Notifications You must be signed in to change notification settings

JasonMa2016/SMODICE

Repository files navigation

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

This is the official PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching, presented at International Conference on Machine Learning, 2022.

SMODICE Demos

Tabular Experiments

  1. Offline Imitation Learning from Mismatched Experts
python smodice_tabular/run_tabular_mismatched.py
  1. Offline Imitation Learning from Examples
python smodice_tabular/run_tabular_example.py

Deep IL Experiments

Setup

  1. Create conda environment and activate it:
    conda env create -f environment.yml
    conda activate smodice
    pip install --upgrade numpy
    pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio===0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
    git clone https://github.com/rail-berkeley/d4rl
    cd d4rl
    pip install -e .
    
    

Offline IL from Observations

  1. Run the following command with variable ENV set to any of hopper, walker2d, halfcheetah, ant, kitchen.
python run_oil_observations.py --env_name $ENV
  1. For the AntMaze environment, first generate the random dataset:
cd envs
python generate_antmaze_random.py --noise

Then, run

python run_oil_antmaze.py

Offline IL from Mismatched Experts

  1. For halfcheetah and ant, run
python run_oil_observations.py --env_name halfcheetah --dataset 0.5 --mismatch True

and

python run_oil_observations.py --env_name ant --dataset disabled --mismatch True

respectively. 2. For AntMaze, run

python run_oil_antmaze.py --mismatch True

Offline IL from Examples

  1. For the PointMass-4Direction task, run
python run_oil_examples_pointmass.py
  1. For the AntMaze task, run
python run_oil_antmaze.py --mismatch False --example True
  1. For the Franka Kitchen based tasks, run
python run_oil_examples_kitchen.py --dataset $DATASET

where DATASET can be one of microwave, kettle.

Baselines

For any task, the BC baseline can be run by appending --disc_type bc to the above commands.

For RCE-TD3-BC and ORIL baselines, on the appropriate tasks, append --algo_type $ALGO where ALGO can be one of rce, oril.

Citation

If you find this repository useful for your research, please cite

@article{ma2022smodice,
      title={SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching}, 
      author={Yecheng Jason Ma and Andrew Shen and Dinesh Jayaraman and Osbert Bastani},
      year={2022},
      url={https://arxiv.org/abs/2202.02433}
}

Contact

If you have any questions regarding the code or paper, feel free to contact me at jasonyma@seas.upenn.edu.

Acknowledgment

This codebase is partially adapted from optidice, rce, relay-policy-learning, and d4rl ; We thank the authors and contributors for open-sourcing their code.

About

Official repository for paper "Versatile Offline Imitation from Observations and Examples via Regularized State-Occupancy Matching" (ICML 2022)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages