Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Concatenation with UniformScaling and numbers #41394

Merged
merged 5 commits into from
Jul 4, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions stdlib/LinearAlgebra/src/LinearAlgebra.jl
Original file line number Diff line number Diff line change
Expand Up @@ -15,8 +15,8 @@ import Base: USE_BLAS64, abs, acos, acosh, acot, acoth, acsc, acsch, adjoint, as
oneunit, parent, power_by_squaring, print_matrix, promote_rule, real, round, sec, sech,
setindex!, show, similar, sin, sincos, sinh, size, sqrt,
strides, stride, tan, tanh, transpose, trunc, typed_hcat, vec
using Base: IndexLinear, promote_op, promote_typeof,
@propagate_inbounds, @pure, reduce, typed_vcat, require_one_based_indexing,
using Base: IndexLinear, promote_eltype, promote_op, promote_typeof,
@propagate_inbounds, @pure, reduce, typed_hvcat, typed_vcat, require_one_based_indexing,
splat
using Base.Broadcast: Broadcasted, broadcasted
import Libdl
Expand Down
26 changes: 19 additions & 7 deletions stdlib/LinearAlgebra/src/uniformscaling.jl
Original file line number Diff line number Diff line change
Expand Up @@ -391,6 +391,7 @@ end
# in A to matrices of type T and sizes given by n[k:end]. n is an array
# so that the same promotion code can be used for hvcat. We pass the type T
# so that we can re-use this code for sparse-matrix hcat etcetera.
promote_to_arrays_(n::Int, ::Type, a::Number) = a
promote_to_arrays_(n::Int, ::Type{Matrix}, J::UniformScaling{T}) where {T} = copyto!(Matrix{T}(undef, n,n), J)
promote_to_arrays_(n::Int, ::Type, A::AbstractVecOrMat) = A
promote_to_arrays(n,k, ::Type) = ()
Expand All @@ -401,11 +402,11 @@ promote_to_arrays(n,k, ::Type{T}, A, B, C) where {T} =
(promote_to_arrays_(n[k], T, A), promote_to_arrays_(n[k+1], T, B), promote_to_arrays_(n[k+2], T, C))
promote_to_arrays(n,k, ::Type{T}, A, B, Cs...) where {T} =
(promote_to_arrays_(n[k], T, A), promote_to_arrays_(n[k+1], T, B), promote_to_arrays(n,k+2, T, Cs...)...)
promote_to_array_type(A::Tuple{Vararg{Union{AbstractVecOrMat,UniformScaling}}}) = Matrix
promote_to_array_type(A::Tuple{Vararg{Union{AbstractVecOrMat,UniformScaling,Number}}}) = Matrix

for (f,dim,name) in ((:hcat,1,"rows"), (:vcat,2,"cols"))
@eval begin
function $f(A::Union{AbstractVecOrMat,UniformScaling}...)
function $f(A::Union{AbstractVecOrMat,UniformScaling,Number}...)
n = -1
for a in A
if !isa(a, UniformScaling)
Expand All @@ -418,13 +419,13 @@ for (f,dim,name) in ((:hcat,1,"rows"), (:vcat,2,"cols"))
end
end
n == -1 && throw(ArgumentError($("$f of only UniformScaling objects cannot determine the matrix size")))
return $f(promote_to_arrays(fill(n,length(A)),1, promote_to_array_type(A), A...)...)
return cat(promote_to_arrays(fill(n, length(A)), 1, promote_to_array_type(A), A...)..., dims=Val(3-$dim))
end
end
end


function hvcat(rows::Tuple{Vararg{Int}}, A::Union{AbstractVecOrMat,UniformScaling}...)
function hvcat(rows::Tuple{Vararg{Int}}, A::Union{AbstractVecOrMat,UniformScaling,Number}...)
require_one_based_indexing(A...)
nr = length(rows)
sum(rows) == length(A) || throw(ArgumentError("mismatch between row sizes and number of arguments"))
Expand Down Expand Up @@ -467,16 +468,27 @@ function hvcat(rows::Tuple{Vararg{Int}}, A::Union{AbstractVecOrMat,UniformScalin
j = 0
for i = 1:nr
if rows[i] > 0 && n[j+1] == -1 # this row consists entirely of UniformScalings
nci = nc ÷ rows[i]
nci * rows[i] != nc && throw(DimensionMismatch("indivisible UniformScaling sizes"))
nci, r = divrem(nc, rows[i])
r != 0 && throw(DimensionMismatch("indivisible UniformScaling sizes"))
for k = 1:rows[i]
n[j+k] = nci
end
end
j += rows[i]
end
end
return hvcat(rows, promote_to_arrays(n,1, promote_to_array_type(A), A...)...)
Atyp = promote_to_array_type(A)
Amat = promote_to_arrays(n, 1, Atyp, A...)
# We have two methods for promote_to_array_type, one returning Matrix and
# another one returning SparseMatrixCSC (in SparseArrays.jl). In the dense
# case, we cannot call hvcat for the promoted UniformScalings because this
# causes a stack overflow. In the sparse case, however, we cannot call
# typed_hvcat because we need a sparse output.
if Atyp == Matrix
dkarrasch marked this conversation as resolved.
Show resolved Hide resolved
return typed_hvcat(promote_eltype(Amat...), rows, Amat...)
else
return hvcat(rows, Amat...)
end
end

## Matrix construction from UniformScaling
Expand Down
12 changes: 12 additions & 0 deletions stdlib/LinearAlgebra/test/uniformscaling.jl
Original file line number Diff line number Diff line change
Expand Up @@ -335,10 +335,19 @@ end
B = T(rand(3,3))
C = T(rand(0,3))
D = T(rand(2,0))
E = T(rand(1,3))
F = T(rand(3,1))
α = rand()
@test (hcat(A, 2I))::T == hcat(A, Matrix(2I, 3, 3))
@test (hcat(E, α))::T == hcat(E, [α])
@test (hcat(E, α, 2I))::T == hcat(E, [α], fill(2, 1, 1))
@test (vcat(A, 2I))::T == vcat(A, Matrix(2I, 4, 4))
@test (vcat(F, α))::T == vcat(F, [α])
@test (vcat(F, α, 2I))::T == vcat(F, [α], fill(2, 1, 1))
@test (hcat(C, 2I))::T == C
@test_throws DimensionMismatch hcat(C, α)
@test (vcat(D, 2I))::T == D
@test_throws DimensionMismatch vcat(D, α)
@test (hcat(I, 3I, A, 2I))::T == hcat(Matrix(I, 3, 3), Matrix(3I, 3, 3), A, Matrix(2I, 3, 3))
@test (vcat(I, 3I, A, 2I))::T == vcat(Matrix(I, 4, 4), Matrix(3I, 4, 4), A, Matrix(2I, 4, 4))
@test (hvcat((2,1,2), B, 2I, I, 3I, 4I))::T ==
Expand All @@ -353,6 +362,9 @@ end
hvcat((2,2,2), B, Matrix(2I, 3, 3), C, C, Matrix(3I, 3, 3), Matrix(4I, 3, 3))
@test hvcat((3,2,1), C, C, I, B ,3I, 2I)::T ==
hvcat((2,2,1), C, C, B, Matrix(3I,3,3), Matrix(2I,6,6))
@test (hvcat((1,2), A, E, α))::T == hvcat((1,2), A, E, [α]) == hvcat((1,2), A, E, α*I)
@test (hvcat((2,2), α, E, F, 3I))::T == hvcat((2,2), [α], E, F, Matrix(3I, 3, 3))
@test (hvcat((2,2), 3I, F, E, α))::T == hvcat((2,2), Matrix(3I, 3, 3), F, E, [α])
end
end

Expand Down
17 changes: 10 additions & 7 deletions stdlib/SparseArrays/src/sparsevector.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1083,23 +1083,26 @@ const _Triangular_DenseArrays{T,A<:Matrix} = LinearAlgebra.AbstractTriangular{T,
const _Annotated_DenseArrays = Union{_Triangular_DenseArrays, _Symmetric_DenseArrays, _Hermitian_DenseArrays}
const _Annotated_Typed_DenseArrays{T} = Union{_Triangular_DenseArrays{T}, _Symmetric_DenseArrays{T}, _Hermitian_DenseArrays{T}}

const _SparseConcatGroup = Union{Vector, Adjoint{<:Any,<:Vector}, Transpose{<:Any,<:Vector}, Matrix, _SparseConcatArrays, _Annotated_SparseConcatArrays, _Annotated_DenseArrays}
const _DenseConcatGroup = Union{Vector, Adjoint{<:Any,<:Vector}, Transpose{<:Any,<:Vector}, Matrix, _Annotated_DenseArrays}
const _SparseConcatGroup = Union{Number, Vector, Adjoint{<:Any,<:Vector}, Transpose{<:Any,<:Vector}, Matrix, _SparseConcatArrays, _Annotated_SparseConcatArrays, _Annotated_DenseArrays}
const _DenseConcatGroup = Union{Number, Vector, Adjoint{<:Any,<:Vector}, Transpose{<:Any,<:Vector}, Matrix, _Annotated_DenseArrays}
stevengj marked this conversation as resolved.
Show resolved Hide resolved
const _TypedDenseConcatGroup{T} = Union{Vector{T}, Adjoint{T,Vector{T}}, Transpose{T,Vector{T}}, Matrix{T}, _Annotated_Typed_DenseArrays{T}}

# Concatenations involving un/annotated sparse/special matrices/vectors should yield sparse arrays
_makesparse(x::Number) = x
_makesparse(x::AbstractArray) = SparseMatrixCSC(issparse(x) ? x : sparse(x))

function Base._cat(dims, Xin::_SparseConcatGroup...)
X = map(x -> SparseMatrixCSC(issparse(x) ? x : sparse(x)), Xin)
X = map(_makesparse, Xin)
T = promote_eltype(Xin...)
Base.cat_t(T, X...; dims=dims)
end
function hcat(Xin::_SparseConcatGroup...)
X = map(x -> SparseMatrixCSC(issparse(x) ? x : sparse(x)), Xin)
hcat(X...)
X = map(_makesparse, Xin)
return cat(X..., dims=Val(2))
end
function vcat(Xin::_SparseConcatGroup...)
X = map(x -> SparseMatrixCSC(issparse(x) ? x : sparse(x)), Xin)
vcat(X...)
X = map(_makesparse, Xin)
return cat(X..., dims=Val(1))
end
hvcat(rows::Tuple{Vararg{Int}}, X::_SparseConcatGroup...) =
vcat(_hvcat_rows(rows, X...)...)
Expand Down