Skip to content

Commit

Permalink
add documentation to test-fims-estimation (#515)
Browse files Browse the repository at this point in the history
  • Loading branch information
ChristineStawitz-NOAA authored Nov 17, 2023
2 parents 36fe2ad + 5d431ad commit c07ab58
Showing 1 changed file with 72 additions and 30 deletions.
102 changes: 72 additions & 30 deletions tests/testthat/test-fims-estimation.R
Original file line number Diff line number Diff line change
Expand Up @@ -16,39 +16,66 @@ FIMS_C0_estimation <- ASSAMC::save_initial_input(
case_name = "FIMS_C0_estimation"
)

# generate om_input, om_output, and em_input
# using function from the model comparison project
ASSAMC::run_om(input_list = FIMS_C0_estimation)

on.exit(unlink(maindir, recursive = T), add = TRUE)
on.exit(unlink(maindir, recursive = TRUE), add = TRUE)

setwd(working_dir)
on.exit(setwd(working_dir), add = TRUE)
# Set-up Rcpp modules and fix parameters to "true"
# om_input, om_output, and em_input generated from ASSAMC::run_om
setup_fims <- function(om_input, om_output, em_input) {
# create new R environment in which to conduct tests
test_env <- new.env(parent = emptyenv())
# initialize FIMS model
test_env$fims <- Rcpp::Module("fims", PACKAGE = "FIMS")

# Recruitment
test_env$recruitment <- new(test_env$fims$BevertonHoltRecruitment)
# logR_sd is NOT logged. It needs to enter the model logged b/c the exp() is taken
# before the likelihood calculation
# create new module in the recruitment class (specifically Beverton-Holt,
# when there are other options, this would be where the option would be chosen)
test_env$recruitment <- methods::new(test_env$fims$BevertonHoltRecruitment)

# NOTE: in first set of parameters below (for recruitment),
# $is_random_effect (default is FALSE) and $estimated (default is FALSE)
# are defined even if they match the defaults in order to provide an example
# of how that is done. Other sections of the code below leave defaults in
# place as appropriate.

# set up logR_sd
# logR_sd is NOT logged. It needs to enter the model logged b/c the exp() is
# taken before the likelihood calculation
test_env$recruitment$log_sigma_recruit$value <- log(om_input$logR_sd)
test_env$recruitment$log_sigma_recruit$is_random_effect <- FALSE
test_env$recruitment$log_sigma_recruit$estimated <- FALSE
# set up log_rzero (equilibrium recruitment)
test_env$recruitment$log_rzero$value <- log(om_input$R0)
test_env$recruitment$log_rzero$is_random_effect <- FALSE
test_env$recruitment$log_rzero$estimated <- TRUE
# set up logit_steep
test_env$recruitment$logit_steep$value <- -log(1.0 - om_input$h) + log(om_input$h - 0.2)
test_env$recruitment$logit_steep$is_random_effect <- FALSE
test_env$recruitment$logit_steep$estimated <- FALSE
# turn on estimation of deviations
test_env$recruitment$estimate_log_devs <- TRUE
# recruit deviations should enter the model in normal space.
# The log is taken in the likelihood calculations
# alternative setting: recruitment$log_devs <- rep(0, length(om_input$logR.resid))
test_env$recruitment$log_devs <- om_input$logR.resid[-1]


# Data
test_env$catch <- em_input$L.obs$fleet1
# set fishing fleet catch data, need to set dimensions of data index
# currently FIMS only has a fleet module that takes index for both survey index and fishery catch
test_env$fishing_fleet_index <- new(test_env$fims$Index, length(test_env$catch))
test_env$fishing_fleet_index$index_data <- test_env$catch
# set fishing fleet age comp data, need to set dimensions of age comps
test_env$fishing_fleet_age_comp <- new(test_env$fims$AgeComp, length(test_env$catch), om_input$nages)
test_env$fishing_fleet_age_comp$age_comp_data <- c(t(em_input$L.age.obs$fleet1)) * em_input$n.L$fleet1

# repeat for surveys
test_env$survey_index <- em_input$surveyB.obs$survey1
test_env$survey_fleet_index <- new(test_env$fims$Index, length(test_env$survey_index))
test_env$survey_fleet_index$index_data <- test_env$survey_index
Expand All @@ -74,8 +101,10 @@ setup_fims <- function(om_input, om_output, em_input) {
test_env$fishing_fleet_selectivity <- new(test_env$fims$LogisticSelectivity)
test_env$fishing_fleet_selectivity$inflection_point$value <- om_input$sel_fleet$fleet1$A50.sel1
test_env$fishing_fleet_selectivity$inflection_point$is_random_effect <- FALSE
# turn on estimation of inflection_point
test_env$fishing_fleet_selectivity$inflection_point$estimated <- TRUE
test_env$fishing_fleet_selectivity$slope$value <- om_input$sel_fleet$fleet1$slope.sel1
# turn on estimation of slope
test_env$fishing_fleet_selectivity$slope$is_random_effect <- FALSE
test_env$fishing_fleet_selectivity$slope$estimated <- TRUE

Expand All @@ -90,7 +119,10 @@ setup_fims <- function(om_input, om_output, em_input) {
test_env$fishing_fleet$random_q <- FALSE
test_env$fishing_fleet$log_obs_error$value <- log(sqrt(log(em_input$cv.L$fleet1^2 + 1)))
test_env$fishing_fleet$log_obs_error$estimated <- FALSE
# Need get_id() for setting up observed agecomp and index data?
# Modules are linked together using module IDs
# Each module has a get_id() function that returns the unique ID for that module
# Each fleet uses the module IDs to link up the correct module to the correct fleet
# Note: Likelihoods not yet set up as a stand-alone modules, so no get_id()
test_env$fishing_fleet$SetAgeCompLikelihood(1)
test_env$fishing_fleet$SetIndexLikelihood(1)
test_env$fishing_fleet$SetSelectivity(test_env$fishing_fleet_selectivity$get_id())
Expand All @@ -101,16 +133,17 @@ setup_fims <- function(om_input, om_output, em_input) {
test_env$survey_fleet_selectivity <- new(test_env$fims$LogisticSelectivity)
test_env$survey_fleet_selectivity$inflection_point$value <- om_input$sel_survey$survey1$A50.sel1
test_env$survey_fleet_selectivity$inflection_point$is_random_effect <- FALSE
# turn on estimation of inflection_point
test_env$survey_fleet_selectivity$inflection_point$estimated <- TRUE
test_env$survey_fleet_selectivity$slope$value <- om_input$sel_survey$survey1$slope.sel1
test_env$survey_fleet_selectivity$slope$is_random_effect <- FALSE
# turn on estimation of slope
test_env$survey_fleet_selectivity$slope$estimated <- TRUE

test_env$survey_fleet <- new(test_env$fims$Fleet)
test_env$survey_fleet$is_survey <- TRUE
test_env$survey_fleet$nages <- om_input$nages
test_env$survey_fleet$nyears <- om_input$nyr
# survey_fleet$log_Fmort <- rep(log(0.0000000000000000000000000001), om_input$nyr) #-Inf?
test_env$survey_fleet$estimate_F <- FALSE
test_env$survey_fleet$random_F <- FALSE
test_env$survey_fleet$log_q <- log(om_output$survey_q$survey1)
Expand All @@ -126,9 +159,6 @@ setup_fims <- function(om_input, om_output, em_input) {

# Population
test_env$population <- new(test_env$fims$Population)
# is it a problem these are not Parameters in the Population interface?
# the Parameter class (from rcpp/rcpp_objects/rcpp_interface_base) cannot handle vectors,
# do we need a ParameterVector class?
test_env$population$log_M <- rep(log(om_input$M.age[1]), om_input$nyr * om_input$nages)
test_env$population$estimate_M <- FALSE
test_env$population$log_init_naa <- log(om_output$N.age[1, ])
Expand All @@ -138,72 +168,83 @@ setup_fims <- function(om_input, om_output, em_input) {
test_env$population$nfleets <- sum(om_input$fleet_num, om_input$survey_num)
test_env$population$nseasons <- 1
test_env$population$nyears <- om_input$nyr
# following line is related to issue #521, may be modified in the future
# https://github.com/NOAA-FIMS/FIMS/issues/521
test_env$population$prop_female <- om_input$proportion.female[1]
test_env$population$SetMaturity(test_env$maturity$get_id())
test_env$population$SetGrowth(test_env$ewaa_growth$get_id())
test_env$population$SetRecruitment(test_env$recruitment$get_id())

# end of setup_fims function, returning test_env
return(test_env)
}

test_that("deterministic test of fims", {
# run function defined above to set up the test environment
deterministic_env <- setup_fims(
om_input = om_input,
om_output = om_output,
em_input = em_input
)
# Set-up TMB
# Set-up
deterministic_env$fims$CreateTMBModel()
# Create parameter list from Rcpp modules
# CreateTMBModel calls a function in information that loops
# over all the populations and fleets and sets all the pointers
parameters <- list(p = deterministic_env$fims$get_fixed())
par_list <- 1:length(parameters[[1]])
par_list[2:length(par_list)] <- NA
map <- list(p = factor(par_list))

obj <- MakeADFun(data = list(), parameters, DLL = "FIMS", map = map)
# get_fixed function is an Rcpp function that loops over all Rcpp
# modules and returned a vector of parameters being estimated

# Set up TMB's computational graph
obj <- MakeADFun(data = list(), parameters, DLL = "FIMS")

# Calculate standard errors
sdr <- TMB::sdreport(obj)
sdr_fixed <- summary(sdr, "fixed")

# Call report using deterministic parameter values
# obj$report() requires parameter list to avoid errors
report <- obj$report(obj$par)

# log(R0)
# Compare log(R0) to true value
fims_logR0 <- sdr_fixed[1, "Estimate"]
expect_gt(fims_logR0, 0.0)
expect_equal(fims_logR0, log(om_input$R0))

# Numbers at age
# Compare numbers at age to true value
for (i in 1:length(c(t(om_output$N.age)))) {
expect_equal(report$naa[[1]][i], c(t(om_output$N.age))[i])
}

# Biomass
# Compare biomass to true value
for (i in 1:length(om_output$biomass.mt)) {
expect_equal(report$biomass[[1]][i], om_output$biomass.mt[i])
}

# Spawning biomass
# Compare spawning biomass to true value
for (i in 1:length(om_output$SSB)) {
expect_equal(report$ssb[[1]][i], om_output$SSB[i])
}

# Recruitment
# Compare recruitment to true value
fims_naa <- matrix(report$naa[[1]][1:(om_input$nyr * om_input$nages)],
nrow = om_input$nyr, byrow = TRUE
)

for (i in 1:length(om_output$N.age[, 1])) {
# loop over years to compare recruitment by year
for (i in 1:om_input$nyr) {
expect_equal(fims_naa[i, 1], om_output$N.age[i, 1])
}

# confirm that recruitment matches the numbers in the first age
# by comparing to fims_naa (what's reported from FIMS)
expect_equal(
fims_naa[1:om_input$nyr, 1],
report$recruitment[[1]][1:om_input$nyr]
)

for (i in 1:length(om_output$N.age[, 1])) {
# confirm that recruitment matches the numbers in the first age
# by comparing to the true values from the OM
for (i in 1:om_input$nyr) {
expect_equal(report$recruitment[[1]][i], om_output$N.age[i, 1])
}

Expand All @@ -216,7 +257,6 @@ test_that("deterministic test of fims", {

# Expected catch
fims_index <- report$exp_index
# Expect small relative error for deterministic test
for (i in 1:length(om_output$L.mt$fleet1)) {
expect_equal(fims_index[[1]][i], om_output$L.mt$fleet1[i])
}
Expand All @@ -230,12 +270,13 @@ test_that("deterministic test of fims", {
# Expect 95% of relative error to be within 2*cv
expect_lte(sum(fims_object_are > om_input$cv.L$fleet1 * 2.0), length(em_input$L.obs$fleet1) * 0.05)

# Expected catch number at age
# Compare expected catch number at age to true values
for (i in 1:length(c(t(om_output$L.age$fleet1)))) {
expect_equal(report$cnaa[[1]][i], c(t(om_output$L.age$fleet1))[i])
}

# Expected catch number at age in proportion
# QUESTION: Isn't this redundant with the non-proportion test above?
fims_cnaa <- matrix(report$cnaa[[1]][1:(om_input$nyr * om_input$nages)],
nrow = om_input$nyr, byrow = TRUE
)
Expand All @@ -246,8 +287,9 @@ test_that("deterministic test of fims", {
expect_equal(c(t(fims_cnaa_proportion))[i], c(t(om_cnaa_proportion))[i])
}

# Expected survey index
cwaa <- matrix(report$cwaa[[2]][1:(om_input$nyr * om_input$nages)], nrow = om_input$nyr, byrow = T)
# Expected survey index.
# Using [[2]] because the survey is the 2nd fleet.
cwaa <- matrix(report$cwaa[[2]][1:(om_input$nyr * om_input$nages)], nrow = om_input$nyr, byrow = TRUE)
expect_equal(fims_index[[2]], apply(cwaa, 1, sum) * om_output$survey_q$survey1)

for (i in 1:length(om_output$survey_index_biomass$survey1)) {
Expand Down Expand Up @@ -276,7 +318,7 @@ test_that("deterministic test of fims", {
for (i in 1:length(c(t(om_cnaa_proportion)))) {
expect_equal(c(t(fims_cnaa_proportion))[i], c(t(om_cnaa_proportion))[i])
}

# clear memory
deterministic_env$fims$clear()
})

Expand Down Expand Up @@ -424,8 +466,8 @@ test_that("estimation test of fims", {
)
sdr_naa1_vec <- sdr_report[which(rownames(sdr_report) == "NAA"), 2]
sdr_naa1 <- sdr_naa1_vec[seq(1, om_input$nyr * om_input$nages, by = om_input$nages)]
fims_naa1_are <- rep(0, length(om_output$N.age[, 1]))
for (i in 1:length(om_output$N.age[, 1])) {
fims_naa1_are <- rep(0, om_input$nyr)
for (i in 1:om_input$nyr) {
fims_naa1_are[i] <- abs(fims_naa[i, 1] - om_output$N.age[i, 1]) # /
# om_output$N.age[i, 1]
# expect_lte(fims_naa1_are[i], 0.25)
Expand Down

0 comments on commit c07ab58

Please sign in to comment.