Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Optimizer]: add quick gelu fusion pass for ViT model. #9718

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions lite/api/paddle_use_passes.h
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,7 @@ USE_MIR_PASS(__xpu__resnet_fuse_pass);
USE_MIR_PASS(__xpu__multi_encoder_fuse_pass);
USE_MIR_PASS(__xpu__embedding_with_eltwise_add_fuse_pass);
USE_MIR_PASS(__xpu__fc_fuse_pass);
USE_MIR_PASS(__xpu__quick_gelu_fuse_pass);
USE_MIR_PASS(__xpu__mmdnn_fuse_pass);
USE_MIR_PASS(__xpu__conv2d_affine_channel_fuse_pass);
USE_MIR_PASS(__xpu__conv2d_fuse_pass);
Expand Down
4 changes: 3 additions & 1 deletion lite/core/optimizer/mir/fusion/__xpu__fc_fuse_pass.cc
Original file line number Diff line number Diff line change
Expand Up @@ -199,7 +199,8 @@ class XPUFcFuser : public FuseBase {
{"leaky_relu", 5},
{"hard_swish", 14},
{"hard_sigmoid", 15},
{"relu6", 17}};
{"relu6", 17},
{"__xpu__quick_gelu", 19}};

float act_param_ = 0.0f;
if (act_type_ == "leaky_relu") {
Expand Down Expand Up @@ -281,6 +282,7 @@ class XPUFcFusePass : public ProgramPass {
for (auto with_bias : {true, false}) {
for (auto act_type : {"relu",
"gelu",
"__xpu__quick_gelu",
/*"sigmoid",
"tanh",
"leaky_relu",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1422,7 +1422,7 @@ class XPUMultiEncoderFusePass : public ProgramPass {
void Apply(const std::unique_ptr<SSAGraph>& graph) override {
if (GetBoolFromEnv("XPU_ENABLE_XTCL")) return;
// TODO(miaotianxiang): backup graph, recover from failed match
std::vector<std::string> act_types{"gelu", "relu"};
std::vector<std::string> act_types{"gelu", "relu", "__xpu__quick_gelu"};
std::vector<std::string> input_poss{"X", "Y"};
std::vector<std::string> qkv_ln_2_out_poss{"X", "Y"};
std::vector<std::string> matmul_types{"matmul", "matmul_v2"};
Expand Down
122 changes: 122 additions & 0 deletions lite/core/optimizer/mir/fusion/__xpu__quick_gelu_fuse_pass.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <math.h>
#include <memory>
#include <string>
#include "lite/backends/xpu/math.h"
#include "lite/core/optimizer/mir/pass_registry.h"
#include "lite/core/optimizer/mir/pattern_matcher_high_api.h"

namespace paddle {
namespace lite {
namespace mir {
namespace fusion {

class XPUQuickGELUFuser : public FuseBase {
public:
XPUQuickGELUFuser() {}

void BuildPattern() override {
auto scale_teller = [](const Node* node) -> bool {
float bias_v =
const_cast<Node*>(node)->AsStmt().op_info()->GetAttr<float>("bias");
float scale_v =
const_cast<Node*>(node)->AsStmt().op_info()->GetAttr<float>("scale");
bool expect_bias = (bias_v == 0.0) ? true : false;
bool expect_scale = (abs(scale_v - 1.702) < 1e-5) ? true : false;
bool has_act = const_cast<Node*>(node)->AsStmt().op_info()->HasAttr(
"activation_type");
Comment on lines +39 to +40
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

node->stmt()
尽量不要用 const_cast

return (expect_bias) && (expect_scale) && (!has_act);
};

/* _____________________
/ \
Create node: X----scale----sigmoid---elementwise_mul---output
*/
auto* x = VarNode("x")->assert_is_op_input("scale", "X")->AsInput();
auto* scale = OpNode("scale", "scale")->assert_node_satisfied(scale_teller);
auto* scale_out = VarNode("scale_out");
auto* sigmoid = OpNode("sigmoid", "sigmoid");
auto* sigmoid_out = VarNode("sigmoid_out");
auto* element_mul =
OpNode("elementwise_mul", "elementwise_mul")
->assert_op_attr_satisfied<int>(
"axis", [](int attr) { return attr == -1 || attr == 0; });
auto* output = VarNode("Out")->AsOutput();

// Construct the topological structure for scale-sigmoid-elementwise_mul
*x >> *scale >> *scale_out >> *sigmoid >> *sigmoid_out;
std::vector<PMNode*> element_mul_inputs{x, sigmoid_out};
element_mul_inputs >> *element_mul >> *output;

// Some op specialities.
scale->AsIntermediate();
scale_out->AsIntermediate();
sigmoid->AsIntermediate();
sigmoid_out->AsIntermediate();
element_mul->AsIntermediate();
}

cpp::OpDesc GenOpDesc(const key2nodes_t& matched) {
auto op_desc = *matched.at("scale")->stmt()->op_info();
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

两个算子的定义完全不同,没必要复用 op_info。更好的做法是新建一个 OpInfo

float scale_val = op_desc.GetAttr<float>("scale");
op_desc.mutable_inputs()->clear();
op_desc.mutable_outputs()->clear();
op_desc.SetType("__xpu__quick_gelu");
op_desc.SetInput("X", {matched.at("x")->arg()->name});
op_desc.SetOutput("Out", {matched.at("Out")->arg()->name});
op_desc.SetAttr("scale", scale_val);
return op_desc;
}

void InsertNewNode(SSAGraph* graph, const key2nodes_t& matched) override {
// get op_desc for gelu op.
auto op_desc = GenOpDesc(matched);
// Create gelu op.
auto gelu_op = LiteOpRegistry::Global().Create("__xpu__quick_gelu");

// find scope and valid_places of original scale op.
auto scale = matched.at("scale")->stmt()->op();
auto* scope = scale->scope();
auto& valid_places = scale->valid_places();

// set gelu op's scope and valid_places which aligned with scale op.
gelu_op->Attach(op_desc, scope);
auto* new_op_node = graph->GraphCreateInstructNode(gelu_op, valid_places);

// link IO to the new op node.
IR_NODE_LINK_TO(matched.at("x"), new_op_node);
IR_NODE_LINK_TO(new_op_node, matched.at("Out"));
}
};

} // namespace fusion

class XPUQuickGELUFusePass : public ProgramPass {
public:
void Apply(const std::unique_ptr<SSAGraph>& graph) override {
fusion::XPUQuickGELUFuser fuser;
fuser(graph.get());
}
};

} // namespace mir
} // namespace lite
} // namespace paddle

REGISTER_MIR_PASS(__xpu__quick_gelu_fuse_pass,
paddle::lite::mir::XPUQuickGELUFusePass)
.BindTargets({TARGET(kXPU)})
.BindKernel("__xpu__quick_gelu");
1 change: 1 addition & 0 deletions lite/core/optimizer/optimizer.cc
Original file line number Diff line number Diff line change
Expand Up @@ -200,6 +200,7 @@ std::unique_ptr<RuntimeProgram> RunDefaultOptimizer(
"__xpu__mmdnn_fuse_pass",
"__xpu__bigru_fuse_pass",
"__xpu__roformer_relative_pos_fuse_pass",
"__xpu__quick_gelu_fuse_pass",
"__xpu__multi_encoder_fuse_pass",
"__xpu__embedding_with_eltwise_add_fuse_pass",
"__xpu__fc_fuse_pass",
Expand Down
1 change: 1 addition & 0 deletions lite/kernels/xpu/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -110,6 +110,7 @@ add_kernel(__xpu__resnet50_compute_xpu XPU extra SRCS __xpu__resnet50_compute.cc
add_kernel(__xpu__multi_encoder_compute_xpu XPU extra SRCS __xpu__multi_encoder_compute.cc)
add_kernel(__xpu__embedding_with_eltwise_add_compute_xpu XPU extra SRCS __xpu__embedding_with_eltwise_add_compute.cc)
add_kernel(__xpu__fc_compute_xpu XPU extra SRCS __xpu__fc_compute.cc)
add_kernel(__xpu__quick_gelu_compute_xpu XPU extra SRCS __xpu__quick_gelu_compute.cc)
add_kernel(__xpu__search_attention_compute_xpu XPU extra SRCS __xpu__search_attention_compute.cc)
add_kernel(__xpu__search_attention_2_compute_xpu XPU extra SRCS __xpu__search_attention_2_compute.cc)
add_kernel(__xpu__mmdnn_compute_xpu XPU extra SRCS __xpu__mmdnn_compute.cc)
Expand Down
2 changes: 2 additions & 0 deletions lite/kernels/xpu/__xpu__multi_encoder_compute.cc
Original file line number Diff line number Diff line change
Expand Up @@ -196,6 +196,8 @@ void XPUMultiEncoderCompute::PrepareForRun() {
// prepare act_type
if (param.act_type == "gelu") {
qkv_act = xdnn::Activation_t::GELU;
} else if (param.act_type == "__xpu__quick_gelu") {
qkv_act = xdnn::Activation_t::QUICK_GELU;
} else if (param.act_type != "relu") {
CHECK(false) << "Invalid QKV Activation Type: " << param.act_type;
}
Expand Down
54 changes: 54 additions & 0 deletions lite/kernels/xpu/__xpu__quick_gelu_compute.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/xpu/__xpu__quick_gelu_compute.h"
#include "lite/backends/xpu/xpu_header_sitter.h"
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace xpu {

template <typename T, PrecisionType PType>
void QuickGeluCompute<T, PType>::Run() {
auto& param = this->template Param<param_t>();
auto& ctx = this->ctx_->template As<XPUContext>();

int r = xdnn::quick_gelu(ctx.GetRawContext(),
param.X->template data<T>(),
param.Out->template mutable_data<T>(TARGET(kXPU)),
param.X->numel());
CHECK_EQ(r, 0);
}

} // namespace xpu
} // namespace kernels
} // namespace lite
} // namespace paddle

using quick_gelu_FP32 =
paddle::lite::kernels::xpu::QuickGeluCompute<float, PRECISION(kFloat)>;
using qucik_gelu_FP16 =
paddle::lite::kernels::xpu::QuickGeluCompute<float16, PRECISION(kFP16)>;
REGISTER_LITE_KERNEL(
__xpu__quick_gelu, kXPU, kFloat, kNCHW, quick_gelu_FP32, def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kXPU))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kXPU))})
.Finalize();
REGISTER_LITE_KERNEL(
__xpu__quick_gelu, kXPU, kFP16, kNCHW, qucik_gelu_FP16, qucik_gelu_FP16)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kXPU), PRECISION(kFP16))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kXPU), PRECISION(kFP16))})
.Finalize();
36 changes: 36 additions & 0 deletions lite/kernels/xpu/__xpu__quick_gelu_compute.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include "lite/core/kernel.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace xpu {

template <typename T, PrecisionType PType>
class QuickGeluCompute : public KernelLite<TARGET(kXPU), PType> {
public:
using param_t = operators::XPUQuickGeluParam;

virtual void Run();

virtual ~QuickGeluCompute() = default;
};

} // namespace xpu
} // namespace kernels
} // namespace lite
} // namespace paddle
1 change: 1 addition & 0 deletions lite/operators/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -233,6 +233,7 @@ add_operator(__xpu__softmax_topk_op extra SRCS __xpu__softmax_topk_op.cc)
add_operator(__xpu__multi_encoder_op extra SRCS __xpu__multi_encoder_op.cc)
add_operator(__xpu__embedding_with_eltwise_add_op extra SRCS __xpu__embedding_with_eltwise_add_op.cc)
add_operator(__xpu__fc_op extra SRCS __xpu__fc_op.cc)
add_operator(__xpu__quick_gelu_op extra SRCS __xpu__quick_gelu_op.cc)
add_operator(__xpu__roformer_relative_embedding_op extra SRCS __xpu__roformer_relative_embedding_op.cc)
add_operator(__xpu__search_attention_op extra SRCS __xpu__search_attention_op.cc)
add_operator(__xpu__mmdnn_op extra SRCS __xpu__mmdnn_op.cc)
Expand Down
47 changes: 47 additions & 0 deletions lite/operators/__xpu__quick_gelu_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.i

#include "lite/operators/__xpu__quick_gelu_op.h"
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace operators {

bool XPUQuickGeluOp::CheckShape() const {
CHECK_OR_FALSE(param_.X);
CHECK_OR_FALSE(param_.Out);
return true;
}

bool XPUQuickGeluOp::InferShapeImpl() const {
param_.Out->Resize(param_.X->dims());
auto out_lod = param_.Out->mutable_lod();
*out_lod = param_.X->lod();
return true;
}

bool XPUQuickGeluOp::AttachImpl(const cpp::OpDesc& opdesc, lite::Scope* scope) {
auto x_name = opdesc.Input("X").front();
auto out_name = opdesc.Output("Out").front();
param_.X = scope->FindVar(x_name)->GetMutable<lite::Tensor>();
param_.Out = scope->FindVar(out_name)->GetMutable<lite::Tensor>();
return true;
}

} // namespace operators
} // namespace lite
} // namespace paddle

REGISTER_LITE_OP(__xpu__quick_gelu, paddle::lite::operators::XPUQuickGeluOp);
48 changes: 48 additions & 0 deletions lite/operators/__xpu__quick_gelu_op.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <string>
#include "lite/core/op_lite.h"
#ifdef LITE_WITH_PROFILE
#include "lite/api/paddle_place.h"
#endif

namespace paddle {
namespace lite {
namespace operators {

class XPUQuickGeluOp : public OpLite {
public:
explicit XPUQuickGeluOp(const std::string& type) : OpLite(type) {}

bool CheckShape() const override;

bool InferShapeImpl() const override;

bool InferType() override { return true; }

bool AttachImpl(const cpp::OpDesc& opdesc, lite::Scope* scope) override;

void AttachKernel(KernelBase* kernel) override { kernel->SetParam(param_); }

std::string DebugString() const override { return "XPUQuickGelu"; }

private:
mutable operators::XPUQuickGeluParam param_;
};

} // namespace operators
} // namespace lite
} // namespace paddle
5 changes: 5 additions & 0 deletions lite/operators/op_params.h
Original file line number Diff line number Diff line change
Expand Up @@ -1768,6 +1768,11 @@ struct XPUEmbeddingWithEltwiseAddParam : ParamBase {
int mask_dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
};

struct XPUQuickGeluParam : ParamBase {
const lite::Tensor* X{};
lite::Tensor* Out{};
};

struct XPUFcParam : ParamBase {
const lite::Tensor* input{nullptr};
const lite::Tensor* w{nullptr};
Expand Down