Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactored splitTrainVal and added multiOS path support #10923

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
81 changes: 38 additions & 43 deletions PPOCRLabel/gen_ocr_train_val_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,48 +17,43 @@ def isCreateOrDeleteFolder(path, flag):
return flagAbsPath


def splitTrainVal(root, absTrainRootPath, absValRootPath, absTestRootPath, trainTxt, valTxt, testTxt, flag):
# 按照指定的比例划分训练集、验证集、测试集
dataAbsPath = os.path.abspath(root)

if flag == "det":
labelFilePath = os.path.join(dataAbsPath, args.detLabelFileName)
elif flag == "rec":
labelFilePath = os.path.join(dataAbsPath, args.recLabelFileName)

labelFileRead = open(labelFilePath, "r", encoding="UTF-8")
labelFileContent = labelFileRead.readlines()
random.shuffle(labelFileContent)
labelRecordLen = len(labelFileContent)

for index, labelRecordInfo in enumerate(labelFileContent):
imageRelativePath = labelRecordInfo.split('\t')[0]
imageLabel = labelRecordInfo.split('\t')[1]
imageName = os.path.basename(imageRelativePath)

if flag == "det":
imagePath = os.path.join(dataAbsPath, imageName)
elif flag == "rec":
imagePath = os.path.join(dataAbsPath, "{}\\{}".format(args.recImageDirName, imageName))

# 按预设的比例划分训练集、验证集、测试集
trainValTestRatio = args.trainValTestRatio.split(":")
trainRatio = eval(trainValTestRatio[0]) / 10
valRatio = trainRatio + eval(trainValTestRatio[1]) / 10
curRatio = index / labelRecordLen

if curRatio < trainRatio:
imageCopyPath = os.path.join(absTrainRootPath, imageName)
shutil.copy(imagePath, imageCopyPath)
trainTxt.write("{}\t{}".format(imageCopyPath, imageLabel))
elif curRatio >= trainRatio and curRatio < valRatio:
imageCopyPath = os.path.join(absValRootPath, imageName)
shutil.copy(imagePath, imageCopyPath)
valTxt.write("{}\t{}".format(imageCopyPath, imageLabel))
else:
imageCopyPath = os.path.join(absTestRootPath, imageName)
shutil.copy(imagePath, imageCopyPath)
testTxt.write("{}\t{}".format(imageCopyPath, imageLabel))
def splitTrainVal(root, abs_train_root_path, abs_val_root_path, abs_test_root_path, train_txt, val_txt, test_txt, flag):

data_abs_path = os.path.abspath(root)
label_file_name = args.detLabelFileName if flag == "det" else args.recLabelFileName
label_file_path = os.path.join(data_abs_path, label_file_name)

with open(label_file_path, "r", encoding="UTF-8") as label_file:
label_file_content = label_file.readlines()
random.shuffle(label_file_content)
label_record_len = len(label_file_content)

for index, label_record_info in enumerate(label_file_content):
image_relative_path, image_label = label_record_info.split('\t')
image_name = os.path.basename(image_relative_path)

if flag == "det":
image_path = os.path.join(data_abs_path, image_name)
elif flag == "rec":
image_path = os.path.join(data_abs_path, args.recImageDirName, image_name)

train_val_test_ratio = args.trainValTestRatio.split(":")
train_ratio = eval(train_val_test_ratio[0]) / 10
val_ratio = train_ratio + eval(train_val_test_ratio[1]) / 10
cur_ratio = index / label_record_len

if cur_ratio < train_ratio:
image_copy_path = os.path.join(abs_train_root_path, image_name)
shutil.copy(image_path, image_copy_path)
train_txt.write("{}\t{}\n".format(image_copy_path, image_label))
elif cur_ratio >= train_ratio and cur_ratio < val_ratio:
image_copy_path = os.path.join(abs_val_root_path, image_name)
shutil.copy(image_path, image_copy_path)
val_txt.write("{}\t{}\n".format(image_copy_path, image_label))
else:
image_copy_path = os.path.join(abs_test_root_path, image_name)
shutil.copy(image_path, image_copy_path)
test_txt.write("{}\t{}\n".format(image_copy_path, image_label))


# 删掉存在的文件
Expand Down Expand Up @@ -148,4 +143,4 @@ def genDetRecTrainVal(args):
help="the name of the folder where the cropped recognition dataset is located"
)
args = parser.parse_args()
genDetRecTrainVal(args)
genDetRecTrainVal(args)