Skip to content

YuLab-SMU/Supplemental_ggtree_placement

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Scalable method for exploring phylogenetic placement uncertainty with custom visualizations using treeio and ggtree

If you use this work in published research, please cite:

Scalable method for exploring phylogenetic placement uncertainty with custom visualizations using treeio and ggtree

This repo contains source code and data to produce Supplementary Material of the above paper.

https://github.com/YuLab-SMU/Supplemental_ggtree_placement

1. exampledata

This directory contains example input data files for phylogenetic analysis and tree placements.

Holomycota:

Contains jplace and CSV files related to the Holomycota dataset.

  • HolomycotaV4_alignedtrim.jplace: Placement file for the Holomycota phylogenetic analysis.
  • V4_group.csv: Associated metadata for the groups in the Holomycota dataset.

Mitsi:

Contains files from the Mitsi dataset.

  • rsbl20190182supp2.jplace: Placement file for the Mitsi dataset.
  • rsbl20190182supp7.tre: Tree file corresponding to the placement data.

subtree:

Contains data for a specific subtree analysis.

  • Amt_tiplabel.csv: Tip label information for the Amt subtree.
  • pplacer_Amt_subtree.jplace: Placement file for the Amt subtree analysis.

2. pdf

This directory contains PDF files of the figures generated from the analysis.

  • Fig1.pdfWorkflow diagram of treeio and ggtree in processing phylogenetic placement data, Fig2.pdf, Fig3.pdf,Fig4.pdf: Figures representing various visualizations of the phylogenetic analysis. FigS1.pdf:Supplementary figure showing detailed performance evaluations of treeio, including runtime and memory efficiency when processing large phylogenetic trees with diverse placement scenarios.

3. Rmarkdown

This directory contains an R Markdown file used for generating the supplementary files for the project.

  • header.tex: LaTeX header for formatting the supplementary file.
  • supplementary_filev2.Rmd: R Markdown source file for generating the supplementary file.
  • supplementary_filev2.pdf: PDF version of the supplementary file.

4. tiff

This directory contains TIFF versions of the figures for high-quality image export.

  • Fig2.tiff, Fig3.tiff, Fig4.tiff: High-resolution images of the figures in TIFF format.

5. simulated_data

This directory contains files and scripts for simulated data analysis.

  • scripts
    Contains R scripts for generating and visualizing simulated data:
    • plot_simulated_jplace.R.r: Script for visualizing simulated .jplace files.
    • run_simulate_jplace.R: Script for generating simulated .jplace data.
  • simulated_jplace
    Contains simulated .jplace files with different configurations:
    • simulate_tips100000_placement_nrow_1000000.jplace
    • simulate_tips100000_placement_nrow_100000.jplace
    • simulate_tips100000_placement_nrow_10000.jplace
    • simulate_tips100000_placement_nrow_1000.jplace
    • (and others with similar naming patterns).
  • src
    Contains alternative versions of scripts for generating and visualizing simulated data:
    • plot_simulated_jplace.R.r
    • run_simulate_jplace.R
  • Other Files
    Test .jplace files with different sample sizes and row configurations for validation:
    • test_jp_1k_1kp.jplace, test_jp_1k_10kp.jplace, test_jp_1k_100kp.jplace, test_jp_1k_1000kp.jplace
    • test_jp_10k_1kp.jplace, test_jp_10k_10kp.jplace, test_jp_10k_100kp.jplace, test_jp_10k_1000kp.jplace
    • test_jp_50k_1kp.jplace, test_jp_50k_10kp.jplace, test_jp_50k_50kp.jplace, test_jp_50k_100kp.jplace
    • test_jp_100k_1kp.jplace, test_jp_100k_10kp.jplace, test_jp_100k_50kp.jplace, test_jp_100k_100kp.jplace
    • (and others with similar naming patterns).

Usage

  • The exampledata directory contains the input data files used in the analysis.
  • Figures are stored in both PDF and TIFF formats for use in publications or presentations.
  • The Rmarkdown directory contains the source file for generating the supplementary materials, which can be edited or recompiled if needed.

Requirements

To reproduce the figures and analyses, you will need:

  • R with necessary packages such as ggtree, treeio, dplyr, and ggplot2.
  • LaTeX for compiling the R Markdown file to PDF.

About

Supplementary code and data

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •