Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

change deprecated String type to AbstractString as per 0.4 spec #1447

Merged
merged 2 commits into from
Oct 10, 2015
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 22 additions & 4 deletions julia.html.markdown
Original file line number Diff line number Diff line change
Expand Up @@ -81,10 +81,13 @@ false
# Strings are created with "
"This is a string."

# Julia has several types of strings, including ASCIIString and UTF8String.
# More on this in the Types section.

# Character literals are written with '
'a'

# A string can be indexed like an array of characters
# Some strings can be indexed like an array of characters
"This is a string"[1] # => 'T' # Julia indexes from 1
# However, this is will not work well for UTF8 strings,
# so iterating over strings is recommended (map, for loops, etc).
Expand Down Expand Up @@ -314,7 +317,7 @@ end


# For loops iterate over iterables.
# Iterable types include Range, Array, Set, Dict, and String.
# Iterable types include Range, Array, Set, Dict, and AbstractString.
for animal=["dog", "cat", "mouse"]
println("$animal is a mammal")
# You can use $ to interpolate variables or expression into strings
Expand Down Expand Up @@ -537,6 +540,17 @@ subtypes(Number) # => 6-element Array{Any,1}:
# Real
subtypes(Cat) # => 0-element Array{Any,1}

# AbstractString, as the name implies, is also an abstract type
subtypes(AbstractString) # 8-element Array{Any,1}:
# Base.SubstitutionString{T<:AbstractString}
# DirectIndexString
# RepString
# RevString{T<:AbstractString}
# RopeString
# SubString{T<:AbstractString}
# UTF16String
# UTF8String

# Every type has a super type; use the `super` function to get it.
typeof(5) # => Int64
super(Int64) # => Signed
Expand All @@ -546,17 +560,21 @@ super(Number) # => Any
super(super(Signed)) # => Number
super(Any) # => Any
# All of these type, except for Int64, are abstract.
typeof("fire") # => ASCIIString
super(ASCIIString) # => DirectIndexString
super(DirectIndexString) # => AbstractString
# Likewise here with ASCIIString

# <: is the subtyping operator
type Lion <: Cat # Lion is a subtype of Cat
mane_color
roar::String
roar::AbstractString
end

# You can define more constructors for your type
# Just define a function of the same name as the type
# and call an existing constructor to get a value of the correct type
Lion(roar::String) = Lion("green",roar)
Lion(roar::AbstractString) = Lion("green",roar)
# This is an outer constructor because it's outside the type definition

type Panther <: Cat # Panther is also a subtype of Cat
Expand Down