This is a Python project demonstrating the implementation of caching and data reduction strategies in asynchronous Python applications to enhance performance.
The project showcases how to effectively apply caching mechanisms and request reduction techniques within asynchronous Python applications. It illustrates methods to cache results of computationally expensive operations and aggregate data, thereby reducing system load and improving response times.
- Asynchronous Caching: Utilizes
aiocache
to store results of asynchronous operations, preventing the need to recompute resource-intensive tasks. - Data Reduction: Implements data aggregation and processing techniques to minimize data volume, enchancing efficiency in subsequent operations
-
Clone the repository:
git clone https://github.com/andy-takker/cache_and_reduce.git
-
Navigate to the project directory:
cd cache_and_reduce
-
Install dependencies using Poetry:
poetry install
-
Activate the virtual environment:
poetry shell
-
Run the main script:
python -m cache_and_reduce
- Python 3.7 or higher
- Poetry for dependency management
cache_and_reduce/
├── clients
│ ├── bar
│ │ ├── cached.py
│ │ ├── client.py
│ │ ├── countered.py
│ │ ├── __init__.py
│ │ └── reduced.py
│ ├── foo.py
│ └── __init__.py
├── __init__.py
├── interfaces
│ ├── bar_client.py
│ ├── foo_client.py
│ └── __init__.py
├── __main__.py
├── servers
│ ├── bar.py
│ ├── foo.py
│ └── __init__.py
└── utils
├── cache.py
├── counter.py
├── __init__.py
└── reduce.py
./clients/
: bar clients - real, countered, cached, reduced./interfaces/
: abstract interfaces for project./servers/
:foo
andbar
example servers for testing./utils/
: decorators for caching, countering and reducing