Skip to content

angeladai/spsg

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SPSG

SPSG presents a self-supervised approach to generate high-quality, colored 3D models of scenes from RGB-D scan observations by learning to infer unobserved scene geometry and color. Rather than relying on 3D reconstruction losses to inform our 3D geometry and color reconstruction, we propose adversarial and perceptual losses operating on 2D renderings in order to achieve high-resolution, high-quality colored reconstructions of scenes. For more details, please see our paper SPSG: Self-Supervised Photometric Scene Generation from RGB-D Scans.

Code

Installation:

Training is implemented with PyTorch. This code was developed under PyTorch 1.2.0 and Python 2.7.

Please compile the extension modules by running the install_utils.sh script.

Training:

  • See python train.py --help for all train options.
  • Example command: python train.py --gpu 0 --data_path ./data/data-geo-color --frame_info_path ./data/data-frames --train_file_list ../filelists/train_list.txt --val_file_list ../filelists/val_list.txt --save_epoch 1 --save logs/mp --max_epoch 5
  • Trained model: spsg.pth (7.5M)

Testing

  • See python test_scene_as_chunks.py --help for all test options.
  • Example command: python test_scene_as_chunks.py --gpu 0 --input_data_path ./data/mp_sdf_2cm_input --target_data_path ./data/mp_sdf_2cm_target --test_file_list ../filelists/mp-rooms_val-scenes.txt --model_path spsg.pth --output ./output --max_to_vis 20

Data:

Citation:

If you find our work useful in your research, please consider citing:

@inproceedings{dai2021spsg,
    title={SPSG: Self-Supervised Photometric Scene Generation from RGB-D Scans},
    author={Dai, Angela and Siddiqui, Yawar and Thies, Justus and Valentin, Julien and Nie{\ss}ner, Matthias},
	booktitle={Proc. Computer Vision and Pattern Recognition (CVPR), IEEE},
	year={2021}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published