Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ONNX] QGemm support #13747

Merged
merged 1 commit into from
Jan 26, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
85 changes: 85 additions & 0 deletions python/tvm/relay/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -4898,6 +4898,90 @@ def _impl_v10(cls, inputs, attr, params):
return out


class QGemm(OnnxOpConverter):
"""Operator converter for QGemm."""

@classmethod
def _impl_v1(cls, inputs, attr, params):
# https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md#com.microsoft.QGemm

a = inputs[0]
a_scale = get_scalar(inputs[1], params)
a_zp = get_scalar(inputs[2], params, "int32")

b = inputs[3]
# must be a scalar or 1D tensor which means a per-tensor or per-column quantization
# If 1-D tensor, number of elements should be equal to columns elements of input B
b_scale = get_scalar_or_1d_tensor(inputs[4], params)
b_zp = get_scalar_or_1d_tensor(inputs[5], params, "int32")

# note that if optional and not provided then value will be None.
C = inputs[6]
# must be null or a scalar or 1D tensor of size 1
y_scale = inputs[7]
# must be null or a scalar or 1D tensor of size 1
y_zp = get_scalar(inputs[8], params, "int32")

assert len(infer_shape(a)) == 2
assert len(infer_shape(b)) == 2
# zero point and scale of input b should have same shape size
assert infer_shape(b_scale) == infer_shape(b_zp)

alpha = float(attr.get("alpha", 1.0))
transA = int(attr.get("transA", 0))
transB = int(attr.get("transB", 0))

# get number of channels
channels = infer_channels(b, not transB)
a_dtype = infer_type(a).checked_type.dtype

if transA:
a = _op.transpose(a, axes=(1, 0))
if not transB:
b = _op.transpose(b, axes=(1, 0))

result = _qnn.op.dense(
a,
b,
a_zp,
b_zp,
a_scale,
b_scale,
channels,
)

if C:
result = _op.add(result, C)

requantize_scale = _op.multiply(a_scale, b_scale)
if alpha != 1.0:
requantize_scale *= _expr.const(alpha, dtype="float32")
requantize_zp = _op.const(0, dtype="int32")

if y_scale:
# requantize requires y_scale to be constant,
# if y_scale is not constant, doing dequantize -> quantize
if isinstance(y_scale, _expr.Constant):
y = _qnn.op.requantize(
result,
requantize_scale,
requantize_zp,
y_scale,
y_zp,
axis=-1,
rounding="TONEAREST",
out_dtype=a_dtype,
)
else:
result_deq = _qnn.op.dequantize(result, requantize_scale, requantize_zp, axis=0)

y = _qnn.op.quantize(result_deq, y_scale, y_zp, axis=0, out_dtype=a_dtype)
else:
y = _op.multiply(_op.cast(result, "float32"), requantize_scale)

return y


class QLinearAdd(OnnxOpConverter):
"""Operator converter for QLinearAdd from Microsoft onnxruntime contrib opset."""

Expand Down Expand Up @@ -6144,6 +6228,7 @@ def _get_convert_map(opset):
"DequantizeLinear": DequantizeLinear.get_converter(opset),
"DynamicQuantizeLinear": DynamicQuantizeLinear.get_converter(opset),
"ReverseSequence": ReverseSequence.get_converter(opset),
"QGemm": QGemm.get_converter(opset),
"QLinearConv": QLinearConv.get_converter(opset),
"QLinearConcat": QLinearConcat.get_converter(opset),
"QLinearAdd": QLinearAdd.get_converter(opset),
Expand Down
168 changes: 168 additions & 0 deletions tests/python/frontend/onnx/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -6153,6 +6153,174 @@ def verify_skiplayernormalization(input_, skip, gamma, beta, bias):
verify_skiplayernormalization(input_array, skip, gamma, beta, bias)


@tvm.testing.known_failing_targets("cuda")
@tvm.testing.parametrize_targets
def test_qgemm(target, dev):
"""test_qgemm"""

def verify_qgemm(
a_shape,
b_shape,
y_shape,
C=False,
y_zp=False,
b_per_tensor_quantization=False,
alpha=1.0,
transA=0,
transB=1,
):
a_array = np.random.randint(low=0, high=255, size=a_shape).astype("uint8")
b_array = np.random.uniform(low=0, high=255, size=b_shape).astype("uint8")

input_nodes = [
helper.make_tensor_value_info("a", TensorProto.UINT8, list(a_shape)),
helper.make_tensor_value_info("b", TensorProto.UINT8, list(b_shape)),
]

initializer = [
helper.make_tensor("a_scale", TensorProto.FLOAT, (), [np.random.rand()]),
helper.make_tensor("a_zero_point", TensorProto.UINT8, (), [np.random.randint(0, 255)]),
]

input_names = [
"a",
"a_scale",
"a_zero_point",
"b",
"b_scale",
"b_zero_point",
]
input_values = [a_array, b_array]

if b_per_tensor_quantization:
initializer.append(
helper.make_tensor("b_scale", TensorProto.FLOAT, (), [np.random.rand()])
)
initializer.append(
helper.make_tensor(
"b_zero_point", TensorProto.UINT8, (), [np.random.randint(0, 255)]
)
)
else: # per_colume_quantization
shape_value = b_shape[0] if transB else b_shape[1]
b_scale_array = np.random.random(shape_value).astype("float32")
w_zero_point_array = np.random.randint(0, 255, size=shape_value).astype("uint8")
initializer.append(
helper.make_tensor(
"b_scale", TensorProto.FLOAT, list(b_scale_array.shape), b_scale_array
)
)
initializer.append(
helper.make_tensor(
"b_zero_point",
TensorProto.UINT8,
list(w_zero_point_array.shape),
w_zero_point_array,
)
)

output_tensor = helper.make_tensor_value_info("output", TensorProto.FLOAT, list(y_shape))

if C is True:
C_shape = (b_shape[0] if transB else b_shape[1],)
C_array = np.random.randint(low=0, high=65536, size=C_shape).astype("int32")
input_nodes.append(helper.make_tensor_value_info("C", TensorProto.INT32, list(C_shape)))
input_names.append("C")
input_values.append(C_array)

if y_zp is True:
input_names.append("y_scale")
initializer.append(
helper.make_tensor("y_scale", TensorProto.FLOAT, (), [np.random.rand()])
)

input_names.append("y_zero_point")
initializer.append(
helper.make_tensor(
"y_zero_point", TensorProto.UINT8, (), [np.random.randint(0, 255)]
)
)

output_tensor = helper.make_tensor_value_info(
"output", TensorProto.UINT8, list(y_shape)
)

kwargs = {}
kwargs["alpha"] = alpha
kwargs["transA"] = transA
kwargs["transB"] = transB

node = helper.make_node(
"QGemm",
inputs=input_names,
outputs=["output"],
domain="com.microsoft",
# Default values for other attributes:
**kwargs,
)

graph = helper.make_graph(
[node],
"QGemm",
inputs=input_nodes,
outputs=[output_tensor],
initializer=initializer,
)
model = helper.make_model(
graph,
producer_name="QGemm",
opset_imports=[
onnx.helper.make_opsetid("com.microsoft", 1),
],
)

verify_with_ort_with_inputs(model, input_values, target=target, dev=dev)

# B per tensor quantization
verify_qgemm(
(20, 30),
(50, 30),
(20, 50),
True,
True,
True,
)

# B per column quantization
verify_qgemm(
(20, 30),
(50, 30),
(20, 50),
True,
True,
False,
)

# test alpha
verify_qgemm(
(20, 30),
(50, 30),
(20, 50),
True,
True,
True,
0.5,
)

# test transpose A
verify_qgemm(
(20, 50),
(20, 80),
(50, 80),
True,
True,
True,
0.5,
1,
0,
)


@tvm.testing.known_failing_targets("cuda")
@tvm.testing.parametrize_targets
def test_qlinearconv(target, dev):
Expand Down