-
-
Notifications
You must be signed in to change notification settings - Fork 1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
TestOWAdaBoostClassification: Modify tests
- Loading branch information
Showing
1 changed file
with
46 additions
and
41 deletions.
There are no files selected for viewing
87 changes: 46 additions & 41 deletions
87
Orange/widgets/classify/tests/test_owadaboostclassification.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,47 +1,52 @@ | ||
# Test methods with long descriptive names can omit docstrings | ||
# pylint: disable=missing-docstring | ||
from PyQt4 import QtGui | ||
|
||
from Orange.widgets.tests.base import WidgetTest | ||
from Orange.classification import TreeLearner, KNNLearner | ||
from Orange.widgets.classify.owadaboost import OWAdaBoostClassification | ||
from Orange.widgets.tests.base import (WidgetTest, WidgetLearnerTestMixin, | ||
GuiToParam) | ||
|
||
|
||
|
||
class TestOWAdaBoostClassification(WidgetTest): | ||
|
||
class TestOWAdaBoostClassification(WidgetTest, WidgetLearnerTestMixin): | ||
def setUp(self): | ||
self.widget = self.create_widget(OWAdaBoostClassification) | ||
self.spinners = [] | ||
self.spinners.append(self.widget.findChildren(QtGui.QSpinBox)[0]) | ||
self.spinners.append(self.widget.findChildren(QtGui.QDoubleSpinBox)[0]) | ||
self.combobox_algorithm = self.widget.findChildren(QtGui.QComboBox)[0] | ||
|
||
def test_visible_boxes(self): | ||
""" Check if boxes are visible """ | ||
self.assertEqual(self.spinners[0].isHidden(), False) | ||
self.assertEqual(self.spinners[1].isHidden(), False) | ||
self.assertEqual(self.combobox_algorithm.isHidden(), False) | ||
|
||
def test_parameters_on_output(self): | ||
""" Check right paramaters on output """ | ||
self.widget.apply() | ||
learner_params = self.widget.learner.params | ||
self.assertEqual(learner_params.get("n_estimators"), self.spinners[0].value()) | ||
self.assertEqual(learner_params.get("learning_rate"), self.spinners[1].value()) | ||
self.assertEqual(learner_params.get('algorithm'), self.combobox_algorithm.currentText()) | ||
|
||
|
||
def test_output_algorithm(self): | ||
""" Check if right learning algorithm is on output when we change algorithm """ | ||
for index, algorithmName in enumerate(self.widget.losses): | ||
self.combobox_algorithm.setCurrentIndex(index) | ||
self.combobox_algorithm.activated.emit(index) | ||
self.assertEqual(self.combobox_algorithm.currentText(), algorithmName) | ||
self.widget.apply() | ||
self.assertEqual(self.widget.learner.params.get("algorithm").capitalize(), | ||
self.combobox_algorithm.currentText().capitalize()) | ||
|
||
def test_learner_on_output(self): | ||
""" Check if learner is on output after create widget and apply """ | ||
self.widget.apply() | ||
self.assertNotEqual(self.widget.learner, None) | ||
self.widget = self.create_widget(OWAdaBoostClassification, | ||
stored_settings={"auto_apply": False}) | ||
self.init() | ||
|
||
def combo_set_value(i, x): | ||
x.activated.emit(i) | ||
x.setCurrentIndex(i) | ||
|
||
losses = self.widget.losses | ||
nest_spin = self.widget.n_estimators_spin | ||
nest_min_max = [nest_spin.minimum(), nest_spin.maximum()] | ||
rate_spin = self.widget.learning_rate_spin | ||
rate_min_max = [rate_spin.minimum(), rate_spin.maximum()] | ||
self.gui_to_params = [ | ||
GuiToParam('algorithm', self.widget.algorithm_combo, | ||
lambda x: x.currentText(), | ||
combo_set_value, losses, list(range(len(losses)))), | ||
GuiToParam('learning_rate', rate_spin, lambda x: x.value(), | ||
lambda i, x: x.setValue(i), rate_min_max, rate_min_max), | ||
GuiToParam('n_estimators', nest_spin, lambda x: x.value(), | ||
lambda i, x: x.setValue(i), nest_min_max, nest_min_max)] | ||
|
||
def test_input_learner(self): | ||
"""Check if base learner properly changes with learner on the input""" | ||
max_depth = 2 | ||
default_base_est = self.widget.base_estimator | ||
self.assertIsInstance(default_base_est, TreeLearner) | ||
self.assertIsNone(default_base_est.params.get("max_depth")) | ||
self.send_signal("Learner", TreeLearner(max_depth=max_depth)) | ||
self.assertEqual(self.widget.base_estimator.params.get("max_depth"), | ||
max_depth) | ||
self.widget.apply_button.button.click() | ||
output_base_est = self.get_output("Learner").params.get("base_estimator") | ||
self.assertEqual(output_base_est.max_depth, max_depth) | ||
|
||
def test_input_learner_disconnect(self): | ||
"""Check base learner after disconnecting learner on the input""" | ||
self.send_signal("Learner", KNNLearner()) | ||
self.assertIsInstance(self.widget.base_estimator, KNNLearner) | ||
self.send_signal("Learner", None) | ||
self.assertEqual(self.widget.base_estimator, | ||
self.widget.DEFAULT_BASE_ESTIMATOR) |