Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Normalize rotations after composition #555

Merged
merged 3 commits into from
Oct 6, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 21 additions & 1 deletion gtsam/geometry/Rot3.h
Original file line number Diff line number Diff line change
Expand Up @@ -262,9 +262,29 @@ namespace gtsam {
static Rot3 AlignTwoPairs(const Unit3& a_p, const Unit3& b_p, //
const Unit3& a_q, const Unit3& b_q);

/// Static, named constructor that finds Rot3 element closest to M in Frobenius norm.
/**
* Static, named constructor that finds Rot3 element closest to M in Frobenius norm.
*
* Uses Full SVD to compute the orthogonal matrix, thus is highly accurate and robust.
*
* N. J. Higham. Matrix nearness problems and applications.
* In M. J. C. Gover and S. Barnett, editors, Applications of Matrix Theory, pages 1–27.
* Oxford University Press, 1989.
*/
static Rot3 ClosestTo(const Matrix3& M) { return Rot3(SO3::ClosestTo(M)); }

/**
* Normalize rotation so that its determinant is 1.
* This means either re-orthogonalizing the Matrix representation or
* normalizing the quaternion representation.
*
* This method is akin to `ClosestTo` but uses a computationally cheaper
* algorithm.
*
* Ref: https://drive.google.com/file/d/0B9rLLz1XQKmaZTlQdV81QjNoZTA/view
*/
Rot3 normalized() const;

/// @}
/// @name Testable
/// @{
Expand Down
27 changes: 27 additions & 0 deletions gtsam/geometry/Rot3M.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -108,6 +108,33 @@ Rot3 Rot3::RzRyRx(double x, double y, double z, OptionalJacobian<3, 1> Hx,
);
}

/* ************************************************************************* */
Rot3 Rot3::normalized() const {
/// Implementation from here: https://stackoverflow.com/a/23082112/1236990

/// Essentially, this computes the orthogonalization error, distributes the
/// error to the x and y rows, and then performs a Taylor expansion to
/// orthogonalize.

Matrix3 rot = rot_.matrix(), rot_orth;

// Check if determinant is already 1.
// If yes, then return the current Rot3.
if (std::fabs(rot.determinant()-1) < 1e-12) return Rot3(rot_);

Vector3 x = rot.block<1, 3>(0, 0), y = rot.block<1, 3>(1, 0);
double error = x.dot(y);

Vector3 x_ort = x - (error / 2) * y, y_ort = y - (error / 2) * x;
Vector3 z_ort = x_ort.cross(y_ort);

rot_orth.block<1, 3>(0, 0) = 0.5 * (3 - x_ort.dot(x_ort)) * x_ort;
rot_orth.block<1, 3>(1, 0) = 0.5 * (3 - y_ort.dot(y_ort)) * y_ort;
rot_orth.block<1, 3>(2, 0) = 0.5 * (3 - z_ort.dot(z_ort)) * z_ort;

return Rot3(rot_orth);
}

/* ************************************************************************* */
Rot3 Rot3::operator*(const Rot3& R2) const {
return Rot3(rot_*R2.rot_);
Expand Down
4 changes: 4 additions & 0 deletions gtsam/geometry/Rot3Q.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,10 @@ namespace gtsam {
gtsam::Quaternion(Eigen::AngleAxisd(x, Eigen::Vector3d::UnitX())));
}

/* ************************************************************************* */
Rot3 Rot3::normalized() const {
return Rot3(quaternion_.normalized());
}
/* ************************************************************************* */
Rot3 Rot3::operator*(const Rot3& R2) const {
return Rot3(quaternion_ * R2.quaternion_);
Expand Down
20 changes: 20 additions & 0 deletions gtsam/geometry/tests/testRot3.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -910,6 +910,26 @@ TEST(Rot3, yaw_derivative) {
CHECK(assert_equal(num, calc));
}

/* ************************************************************************* */
TEST(Rot3, determinant) {
size_t degree = 1;
Rot3 R_w0; // Zero rotation
Rot3 R_w1 = Rot3::Ry(degree * M_PI / 180);

Rot3 R_01, R_w2;
double actual, expected = 1.0;

for (size_t i = 2; i < 360; ++i) {
R_01 = R_w0.between(R_w1);
R_w2 = R_w1 * R_01;
R_w0 = R_w1;
R_w1 = R_w2.normalized();
actual = R_w2.matrix().determinant();

EXPECT_DOUBLES_EQUAL(expected, actual, 1e-7);
}
}

/* ************************************************************************* */
int main() {
TestResult tr;
Expand Down