Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ML] Fix for Deberta tokenizer when input sequence exceeds 512 tokens #117595

Merged
merged 4 commits into from
Nov 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions docs/changelog/117595.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
pr: 117595
summary: Fix for Deberta tokenizer when input sequence exceeds 512 tokens
area: Machine Learning
type: bug
issues: []
Original file line number Diff line number Diff line change
Expand Up @@ -331,6 +331,29 @@ public List<TokenizationResult.Tokens> tokenize(String seq1, String seq2, Tokeni
tokenIdsSeq2 = tokenIdsSeq2.subList(0, maxSequenceLength() - extraTokens - tokenIdsSeq1.size());
tokenPositionMapSeq2 = tokenPositionMapSeq2.subList(0, maxSequenceLength() - extraTokens - tokenIdsSeq1.size());
}
case BALANCED -> {
isTruncated = true;
int firstSequenceLength = 0;

if (tokenIdsSeq2.size() > (maxSequenceLength() - getNumExtraTokensForSeqPair()) / 2) {
firstSequenceLength = min(tokenIdsSeq1.size(), (maxSequenceLength() - getNumExtraTokensForSeqPair()) / 2);
} else {
firstSequenceLength = min(
tokenIdsSeq1.size(),
maxSequenceLength() - tokenIdsSeq2.size() - getNumExtraTokensForSeqPair()
);
}
int secondSequenceLength = min(
tokenIdsSeq2.size(),
maxSequenceLength() - firstSequenceLength - getNumExtraTokensForSeqPair()
);

tokenIdsSeq1 = tokenIdsSeq1.subList(0, firstSequenceLength);
tokenPositionMapSeq1 = tokenPositionMapSeq1.subList(0, firstSequenceLength);

tokenIdsSeq2 = tokenIdsSeq2.subList(0, secondSequenceLength);
tokenPositionMapSeq2 = tokenPositionMapSeq2.subList(0, secondSequenceLength);
}
case NONE -> throw ExceptionsHelper.badRequestException(
"Input too large. The tokenized input length [{}] exceeds the maximum sequence length [{}]",
numTokens,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,18 +10,22 @@
import org.elasticsearch.test.ESTestCase;
import org.elasticsearch.xpack.core.ml.inference.results.TextSimilarityInferenceResults;
import org.elasticsearch.xpack.core.ml.inference.trainedmodel.BertTokenization;
import org.elasticsearch.xpack.core.ml.inference.trainedmodel.DebertaV2Tokenization;
import org.elasticsearch.xpack.core.ml.inference.trainedmodel.TextSimilarityConfig;
import org.elasticsearch.xpack.core.ml.inference.trainedmodel.Tokenization;
import org.elasticsearch.xpack.core.ml.inference.trainedmodel.VocabularyConfig;
import org.elasticsearch.xpack.ml.inference.nlp.tokenizers.BertTokenizationResult;
import org.elasticsearch.xpack.ml.inference.nlp.tokenizers.BertTokenizer;
import org.elasticsearch.xpack.ml.inference.nlp.tokenizers.DebertaV2Tokenizer;
import org.elasticsearch.xpack.ml.inference.nlp.tokenizers.TokenizationResult;
import org.elasticsearch.xpack.ml.inference.pytorch.results.PyTorchInferenceResult;

import java.io.IOException;
import java.util.List;

import static org.elasticsearch.xpack.ml.inference.nlp.tokenizers.BertTokenizerTests.TEST_CASED_VOCAB;
import static org.elasticsearch.xpack.ml.inference.nlp.tokenizers.DebertaV2TokenizerTests.TEST_CASE_SCORES;
import static org.elasticsearch.xpack.ml.inference.nlp.tokenizers.DebertaV2TokenizerTests.TEST_CASE_VOCAB;
import static org.hamcrest.Matchers.closeTo;
import static org.hamcrest.Matchers.equalTo;
import static org.hamcrest.Matchers.is;
Expand Down Expand Up @@ -62,6 +66,33 @@ public void testProcessor() throws IOException {
assertThat(result.predictedValue(), closeTo(42, 1e-6));
}

public void testBalancedTruncationWithLongInput() throws IOException {
String question = "Is Elasticsearch scalable?";
StringBuilder longInputBuilder = new StringBuilder();
for (int i = 0; i < 1000; i++) {
longInputBuilder.append(TEST_CASE_VOCAB.get(randomIntBetween(0, TEST_CASE_VOCAB.size() - 1))).append(i).append(" ");
}
String longInput = longInputBuilder.toString().trim();

DebertaV2Tokenization tokenization = new DebertaV2Tokenization(false, true, null, Tokenization.Truncate.BALANCED, -1);
DebertaV2Tokenizer tokenizer = DebertaV2Tokenizer.builder(TEST_CASE_VOCAB, TEST_CASE_SCORES, tokenization).build();
TextSimilarityConfig textSimilarityConfig = new TextSimilarityConfig(
question,
new VocabularyConfig(""),
tokenization,
"result",
TextSimilarityConfig.SpanScoreFunction.MAX
);
TextSimilarityProcessor processor = new TextSimilarityProcessor(tokenizer);
TokenizationResult tokenizationResult = processor.getRequestBuilder(textSimilarityConfig)
.buildRequest(List.of(longInput), "1", Tokenization.Truncate.BALANCED, -1, null)
.tokenization();

// Assert that the tokenization result is as expected
assertThat(tokenizationResult.anyTruncated(), is(true));
assertThat(tokenizationResult.getTokenization(0).tokenIds().length, equalTo(512));
}

public void testResultFunctions() {
BertTokenization tokenization = new BertTokenization(false, true, 384, Tokenization.Truncate.NONE, 128);
BertTokenizer tokenizer = BertTokenizer.builder(TEST_CASED_VOCAB, tokenization).build();
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@

public class DebertaV2TokenizerTests extends ESTestCase {

private static final List<String> TEST_CASE_VOCAB = List.of(
public static final List<String> TEST_CASE_VOCAB = List.of(
DebertaV2Tokenizer.CLASS_TOKEN,
DebertaV2Tokenizer.PAD_TOKEN,
DebertaV2Tokenizer.SEPARATOR_TOKEN,
Expand All @@ -48,7 +48,7 @@ public class DebertaV2TokenizerTests extends ESTestCase {
"<0xAD>",
"▁"
);
private static final List<Double> TEST_CASE_SCORES = List.of(
public static final List<Double> TEST_CASE_SCORES = List.of(
0.0,
0.0,
0.0,
Expand Down