Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

tentative solution for multiple calls of analyze_vars_in_cols #938

Merged
merged 27 commits into from
Jun 6, 2023

Conversation

Melkiades
Copy link
Contributor

Fixes #931 and #936

@Melkiades Melkiades added bug Something isn't working sme labels May 25, 2023
R/survival_timepoint.R Outdated Show resolved Hide resolved
@Melkiades Melkiades linked an issue May 25, 2023 that may be closed by this pull request
3 tasks
@Melkiades Melkiades changed the title 931 reinstate summarize vars in cols@main tentative solution for multiple calls of analyze_vars_in_cols May 25, 2023
@Melkiades Melkiades marked this pull request as ready for review May 31, 2023 10:15
@Melkiades
Copy link
Contributor Author

I tag you @edelarua @ayogasekaram @shajoezhu to take a look at the current solution (see tests). I think the output is finally what is needed for PKCT01. There is a problem with labelstr for summarize_row_groups (it does not do it), but I am working on it by implementing another solution for this on the side that was suggested by Gabe. I will file issues to rtables if this still does not work

@github-actions
Copy link
Contributor

github-actions bot commented May 31, 2023

Unit Tests Summary

       1 files    78 suites   54s ⏱️
   732 tests 732 ✔️     0 💤 0
1 553 runs  976 ✔️ 577 💤 0

Results for commit f636231.

♻️ This comment has been updated with latest results.

R/analyze_vars_in_cols.R Outdated Show resolved Hide resolved
@Melkiades
Copy link
Contributor Author

This is ready. I will create corresponding fixes in scda.test and catalog. Please consider comparing this with summarize_patients_exposure_in_cols and analyze_patients_exposure_in_cols which do a similar thing but with much more nesting of functions and duplication

@github-actions
Copy link
Contributor

github-actions bot commented Jun 2, 2023

badge

Code Coverage Summary

Filename                                   Stmts    Miss  Cover    Missing
---------------------------------------  -------  ------  -------  ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
R/abnormal_by_baseline.R                      63       0  100.00%
R/abnormal_by_marked.R                        52       5  90.38%   124-128
R/abnormal_by_worst_grade_worsen.R           113       3  97.35%   233-235
R/abnormal_by_worst_grade.R                   37       0  100.00%
R/abnormal.R                                  40       0  100.00%
R/analyze_vars_in_cols.R                     113      23  79.65%   164, 188-193, 206, 219-225, 268-274, 305
R/combination_function.R                       9       0  100.00%
R/compare_variables.R                        138       3  97.83%   134, 240, 258
R/control_incidence_rate.R                    10       0  100.00%
R/control_logistic.R                           7       0  100.00%
R/control_step.R                              23       1  95.65%   58
R/control_survival.R                          15       0  100.00%
R/count_cumulative.R                          47       1  97.87%   63
R/count_missed_doses.R                        31       0  100.00%
R/count_occurrences_by_grade.R                84       6  92.86%   156-158, 161, 176-177
R/count_occurrences.R                         61       1  98.36%   92
R/count_patients_events_in_cols.R             67       1  98.51%   74
R/count_patients_with_event.R                 33       0  100.00%
R/count_patients_with_flags.R                 39       0  100.00%
R/count_values.R                              24       0  100.00%
R/cox_regression_inter.R                     142       0  100.00%
R/cox_regression.R                           161       0  100.00%
R/coxph.R                                    169       9  94.67%   19-20, 227-231, 275, 290, 298, 304-305
R/d_pkparam.R                                406       0  100.00%
R/decorate_grob.R                            167      38  77.25%   232-263, 274, 371, 393-430
R/desctools_binom_diff.R                     663      66  90.05%   68, 103-104, 144-145, 148, 227, 253-262, 301, 303, 323, 327, 331, 335, 391, 394, 397, 400, 461, 469, 481-482, 488-491, 499, 502, 511, 514, 562-563, 565-566, 568-569, 571-572, 642, 654-667, 672, 719, 732, 736
R/df_explicit_na.R                            30       0  100.00%
R/estimate_multinomial_rsp.R                  47       1  97.87%   60
R/estimate_proportion.R                      198      11  94.44%   75-82, 86, 91, 460, 565
R/fit_rsp_step.R                              36       0  100.00%
R/fit_survival_step.R                         36       0  100.00%
R/formatting_functions.R                     115       3  97.39%   107, 145, 155
R/g_forest.R                                 437      23  94.74%   197, 248-249, 316, 333-334, 339-340, 353, 369, 416, 447, 523, 532, 613-617, 627, 697, 700, 824
R/g_lineplot.R                               199      29  85.43%   160, 173, 201, 227-230, 307-314, 332-333, 339-349, 441, 449
R/g_step.R                                    68       1  98.53%   109
R/g_waterfall.R                               47       0  100.00%
R/h_adsl_adlb_merge_using_worst_flag.R        74       0  100.00%
R/h_biomarkers_subgroups.R                    38       0  100.00%
R/h_cox_regression.R                         110       0  100.00%
R/h_logistic_regression.R                    468       3  99.36%   206-207, 276
R/h_map_for_count_abnormal.R                  54       0  100.00%
R/h_pkparam_sort.R                            15       0  100.00%
R/h_response_biomarkers_subgroups.R           74       0  100.00%
R/h_response_subgroups.R                     171      12  92.98%   257-270
R/h_stack_by_baskets.R                        65       1  98.46%   91
R/h_step.R                                   180       0  100.00%
R/h_survival_biomarkers_subgroups.R           78       0  100.00%
R/h_survival_duration_subgroups.R            200      12  94.00%   259-271
R/incidence_rate.R                            93       7  92.47%   68-75
R/individual_patient_plot.R                  133       0  100.00%
R/kaplan_meier_plot.R                        575      61  89.39%   248-283, 292-296, 494, 666-668, 676-678, 703, 710-711, 881, 1071, 1318-1329
R/logistic_regression.R                      101       0  100.00%
R/missing_data.R                              21       3  85.71%   32, 66, 76
R/odds_ratio.R                               106       0  100.00%
R/prop_diff_test.R                            88       0  100.00%
R/prop_diff.R                                260      16  93.85%   72-75, 107, 267-274, 413, 473, 578
R/prune_occurrences.R                         57      10  82.46%   140-144, 190-194
R/response_biomarkers_subgroups.R             59       0  100.00%
R/response_subgroups.R                       165       4  97.58%   279, 321-323
R/rtables_access.R                            38       4  89.47%   161-164
R/score_occurrences.R                         20       1  95.00%   124
R/split_cols_by_groups.R                      49       0  100.00%
R/stat.R                                      47       3  93.62%   73-74, 129
R/summarize_ancova.R                          95       1  98.95%   189
R/summarize_change.R                          27       0  100.00%
R/summarize_colvars.R                          6       0  100.00%
R/summarize_coxreg.R                         140       0  100.00%
R/summarize_glm_count.R                      164       4  97.56%   188, 193, 254, 322
R/summarize_num_patients.R                    68       5  92.65%   103-105, 209-210
R/summarize_patients_exposure_in_cols.R       79       0  100.00%
R/summarize_variables.R                      216       2  99.07%   268, 486
R/survival_biomarkers_subgroups.R             59       0  100.00%
R/survival_coxph_pairwise.R                   73       9  87.67%   64-72
R/survival_duration_subgroups.R              172       0  100.00%
R/survival_time.R                             47       0  100.00%
R/survival_timepoint.R                       114       7  93.86%   150-156
R/utils_checkmate.R                           68       0  100.00%
R/utils_factor.R                              87       1  98.85%   91
R/utils_grid.R                               111       5  95.50%   152, 262-268
R/utils_rtables.R                             86       7  91.86%   24, 31-35, 345-346
R/utils.R                                    137      10  92.70%   105, 107, 111, 131, 134, 137, 141, 150-151, 334
TOTAL                                       9015     413  95.42%

Diff against main

Filename                    Stmts    Miss  Cover
------------------------  -------  ------  -------
R/analyze_vars_in_cols.R      +76     +22  -17.65%
TOTAL                         +76     +22  -0.21%

Results for commit: 1cb133d

Minimum allowed coverage is 80%

♻️ This comment has been updated with latest results

Copy link
Contributor

@edelarua edelarua left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Lgtm! I tried it out and it seems to work fine. Thanks Davide!

@Melkiades Melkiades merged commit 3216d19 into main Jun 6, 2023
@Melkiades Melkiades deleted the 931_reinstate_summarize_vars_in_cols@main branch June 6, 2023 08:12
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working sme
Projects
None yet
2 participants