Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add torch frontend masked_scatter and masked_scatter_ #28783

Merged
merged 9 commits into from
Jul 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions ivy/functional/frontends/torch/tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -1077,6 +1077,23 @@ def masked_fill_(self, mask, value):
def masked_select(self, mask):
return torch_frontend.masked_select(self, mask)

def masked_scatter(self, mask, source):
flat_self = torch_frontend.flatten(self.clone())
flat_mask = torch_frontend.flatten(mask)
flat_source = torch_frontend.flatten(source)
indices = torch_frontend.squeeze(torch_frontend.nonzero(flat_mask), -1)
flat_self.scatter_(0, indices, flat_source[:indices.shape[0]])
return flat_self.reshape(self.shape)

def masked_scatter_(self, mask, source):
flat_self = torch_frontend.flatten(self.clone())
flat_mask = torch_frontend.flatten(mask)
flat_source = torch_frontend.flatten(source)
indices = torch_frontend.squeeze(torch_frontend.nonzero(flat_mask), -1)
flat_self.scatter_(0, indices, flat_source[:indices.shape[0]])
self.ivy_array = flat_self.reshape(self.shape).ivy_array
return self

@with_unsupported_dtypes({"2.2 and below": ("float16", "bfloat16")}, "torch")
def index_add_(self, dim, index, source, *, alpha=1):
self.ivy_array = torch_frontend.index_add(
Expand Down
87 changes: 87 additions & 0 deletions ivy_tests/test_ivy/test_frontends/test_torch/test_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -332,6 +332,24 @@ def _masked_fill_helper(draw):
return dtypes[0], xs[0], cond, fill_value


@st.composite
def _masked_scatter_helper(draw):
shape = draw(helpers.get_shape(min_num_dims=1, min_dim_size=1))
dtypes, xs = draw(
helpers.dtype_and_values(
available_dtypes=helpers.get_dtypes("valid"),
num_arrays=2,
shape=shape,
shared_dtype=True,
large_abs_safety_factor=16,
small_abs_safety_factor=16,
safety_factor_scale="log",
)
)
mask = draw(helpers.array_values(dtype="bool", shape=shape))
return dtypes[0], xs[0], mask, xs[1]


@st.composite
def _repeat_helper(draw):
shape = draw(
Expand Down Expand Up @@ -9345,6 +9363,75 @@ def test_torch_masked_select(
on_device=on_device,
)

# masked_scatter
@handle_frontend_method(
class_tree=CLASS_TREE,
init_tree="torch.tensor",
method_name="masked_scatter",
dtype_x_mask_val=_masked_scatter_helper(),
)
def test_torch_masked_scatter(
dtype_x_mask_val,
frontend_method_data,
init_flags,
method_flags,
frontend,
on_device,
backend_fw,
):
dtype, x, mask, val = dtype_x_mask_val
helpers.test_frontend_method(
init_input_dtypes=[dtype],
backend_to_test=backend_fw,
init_all_as_kwargs_np={
"data": x,
},
method_input_dtypes=["bool", dtype],
method_all_as_kwargs_np={
"mask": mask,
"source": val,
},
frontend_method_data=frontend_method_data,
init_flags=init_flags,
method_flags=method_flags,
frontend=frontend,
on_device=on_device,
)

# masked_scatter_
@handle_frontend_method(
class_tree=CLASS_TREE,
init_tree="torch.tensor",
method_name="masked_scatter_",
dtype_x_mask_val=_masked_scatter_helper(),
)
def test_torch_masked_scatter_(
dtype_x_mask_val,
frontend_method_data,
init_flags,
method_flags,
frontend,
on_device,
backend_fw,
):
dtype, x, mask, val = dtype_x_mask_val
helpers.test_frontend_method(
init_input_dtypes=[dtype],
backend_to_test=backend_fw,
init_all_as_kwargs_np={
"data": x,
},
method_input_dtypes=["bool", dtype],
method_all_as_kwargs_np={
"mask": mask,
"source": val,
},
frontend_method_data=frontend_method_data,
init_flags=init_flags,
method_flags=method_flags,
frontend=frontend,
on_device=on_device,
)

# matmul
@handle_frontend_method(
Expand Down
Loading