Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Krnowak/sockmap netns v6 #4

Open
wants to merge 4,160 commits into
base: krnowak/sockmap-v6-base-branch
Choose a base branch
from

Conversation

krnowak
Copy link
Member

@krnowak krnowak commented Jun 27, 2019

No description provided.

@krnowak
Copy link
Member Author

krnowak commented Jun 27, 2019

TODO: Add flags for the helper:

enum bpf_sk_get_netns_flags {
BPF_F_NETNS_DEV = 1 << 0,
BPF_F_NETNS_INO = 1 << 1,
};

@krnowak krnowak force-pushed the krnowak/sockmap-netns-v6 branch from 0cf6a6d to a0fcc4e Compare July 1, 2019 09:50
Paolo Abeni and others added 28 commits July 3, 2019 13:51
This will simplify indirect call wrapper invocation in the following
patch.

No functional change intended, any - out-of-tree - IPv6 user of
inet_{recv,send}msg can keep using the existing functions.

SCTP code still uses the existing version even for ipv6: as this series
will not add ICW for SCTP, moving to the new helper would not give
any benefit.

The only other in-kernel user of inet_{recv,send}msg is
pvcalls_conn_back_read(), but psvcalls explicitly creates only IPv4 socket,
so no need to update that code path, too.

v1 -> v2: drop inet6_{recv,send}msg declaration from header file,
   prefer ICW macro instead

Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
…}msg

After the previous patch we have ipv{6,4} variants for {recv,send}msg,
we should use the generic _INET ICW variant to call into the proper
build-in.

This also allows dropping the now unused and rather ugly _INET4 ICW macro

v1 -> v2:
 - use ICW macro to declare inet6_{recv,send}msg
 - fix a couple of checkpatch offender in the code context

Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This avoids an indirect call per syscall for common ipv6 transports

Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This avoids an indirect call per syscall for common ipv4 transports

v1 -> v2:
 - avoid unneeded reclaration for udp_sendmsg, as suggested by Willem

Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Paolo Abeni says:

====================
net: use ICW for sk_proto->{send,recv}msg

This series extends ICW usage to one of the few remaining spots in fast-path
still hitting per packet retpoline overhead, namely the sk_proto->{send,recv}msg
calls.

The first 3 patches in this series refactor the existing code so that applying
the ICW macros is straight-forward: we demux inet_{recv,send}msg in ipv4 and
ipv6 variants so that each of them can easily select the appropriate TCP or UDP
direct call. While at it, a new helper is created to avoid excessive code
duplication, and the current ICWs for inet_{recv,send}msg are adjusted
accordingly.

The last 2 patches really introduce the new ICW use-case, respectively for the
ipv6 and the ipv4 code path.

This gives up to 5% performance improvement under UDP flood, and smaller but
measurable gains for TCP RR workloads.

v1 -> v2:
 - drop inet6_{recv,send}msg declaration from header file,
   prefer ICW macro instead
 - avoid unneeded reclaration for udp_sendmsg, as suggested by Willem
====================

Acked-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently the check to see if a page is allocated is incorrect
and is checking if the pointer page is null, not *page as
intended.  Fix this.

Addresses-Coverity: ("Dereference before null check")
Fixes: f5cedc8 ("gve: Add transmit and receive support")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Uppercase is a reminiscence from the iptables infrastructure, rename
this header before this is included in stable kernels.

Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
…how()

A string which did not contain a data format specification should be put
into a sequence. Thus use the corresponding function “seq_puts”.

This issue was detected by using the Coccinelle software.

Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Its not used anywhere, so remove this.

Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
windows real servers can handle gre tunnels, this patch allows
gre encapsulation with the tunneling method, thereby letting ipvs
be load balancer for windows-based services

Signed-off-by: Vadim Fedorenko <vfedorenko@yandex-team.ru>
Acked-by: Julian Anastasov <ja@ssi.bg>
Signed-off-by: Simon Horman <horms@verge.net.au>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Add rts2rts_qp_counters_set_id field in hca cap so that RTS2RTS
qp modification can be used to change the counter of a QP.

Signed-off-by: Mark Zhang <markz@mellanox.com>
Reviewed-by: Majd Dibbiny <majd@mellanox.com>
Acked-by: Saeed Mahameed <saeedm@mellanox.com>
Signed-off-by: Leon Romanovsky <leonro@mellanox.com>
The variable err is being assigned with a value that is never
read and it is being updated in the next statement with a new value.
The assignment is redundant and can be removed.

Addresses-Coverity: ("Unused value")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, gratuitous ARP/ND packets are sent every `miimon'
milliseconds. This commit allows a user to specify a custom delay
through a new option, `peer_notif_delay'.

Like for `updelay' and `downdelay', this delay should be a multiple of
`miimon' to avoid managing an additional work queue. The configuration
logic is copied from `updelay' and `downdelay'. However, the default
value cannot be set using a module parameter: Netlink or sysfs should
be used to configure this feature.

When setting `miimon' to 100 and `peer_notif_delay' to 500, we can
observe the 500 ms delay is respected:

    20:30:19.354693 ARP, Request who-has 203.0.113.10 tell 203.0.113.10, length 28
    20:30:19.874892 ARP, Request who-has 203.0.113.10 tell 203.0.113.10, length 28
    20:30:20.394919 ARP, Request who-has 203.0.113.10 tell 203.0.113.10, length 28
    20:30:20.914963 ARP, Request who-has 203.0.113.10 tell 203.0.113.10, length 28

In bond_mii_monitor(), I have tried to keep the lock logic readable.
The change is due to the fact we cannot rely on a notification to
lower the value of `bond->send_peer_notif' as `NETDEV_NOTIFY_PEERS' is
only triggered once every N times, while we need to decrement the
counter each time.

iproute2 also needs to be updated to be able to specify this new
attribute through `ip link'.

Signed-off-by: Vincent Bernat <vincent@bernat.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
Enable GMAC v4.xx and beyond to support 16KiB buffer.

Signed-off-by: Weifeng Voon <weifeng.voon@intel.com>
Signed-off-by: Ong Boon Leong <boon.leong.ong@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Both MTK_TRGMII_MT7621_CLK and MTK_PATH_BIT are defined as bit 10.

This can causes issues on non-MT7621 devices which has the
MTK_PATH_BIT(MTK_ETH_PATH_GMAC1_RGMII) and MTK_TRGMII capability set.
The wrong TRGMII setup code can be executed. The current wrongly executed
code doesn’t do any harm on MT7623 and the TRGMII setup for the MT7623
SOC side is done in MT7530 driver So it wasn’t noticed in the test.

Move all capability bits in one enum so that they are all unique and easy
to expand in the future.

Because mtk_eth_path enum is merged in to mkt_eth_capabilities, the
variable path value is no longer between 0 to number of paths,
mtk_eth_path_name can’t be used anymore in this form. Convert the
mtk_eth_path_name array to a function to lookup the pathname.

The old code walked thru the mtk_eth_path enum, which is also merged
with mkt_eth_capabilities. Expand array mtk_eth_muxc so it can store the
name and capability bit of the mux. Convert the code so it can walk thru
the mtk_eth_muxc array.

Fixes: 8efaa65 ("net: ethernet: mediatek: Add MT7621 TRGMII mode support")
Signed-off-by: René van Dorst <opensource@vdorst.com>

v1->v2:
- Move all capability bits in one enum, suggested by Willem de Bruijn
- Convert the mtk_eth_path_name array to a function to lookup the pathname
- Expand array mtk_eth_muxc so it can also store the name and capability
  bit of the mux
- Updated commit message

Signed-off-by: David S. Miller <davem@davemloft.net>
Daniel Borkmann says:

====================
pull-request: bpf-next 2019-07-03

The following pull-request contains BPF updates for your *net-next* tree.

There is a minor merge conflict in mlx5 due to 8960b38 ("linux/dim:
Rename externally used net_dim members") which has been pulled into your
tree in the meantime, but resolution seems not that bad ... getting current
bpf-next out now before there's coming more on mlx5. ;) I'm Cc'ing Saeed
just so he's aware of the resolution below:

** First conflict in drivers/net/ethernet/mellanox/mlx5/core/en_main.c:

  <<<<<<< HEAD
  static int mlx5e_open_cq(struct mlx5e_channel *c,
                           struct dim_cq_moder moder,
                           struct mlx5e_cq_param *param,
                           struct mlx5e_cq *cq)
  =======
  int mlx5e_open_cq(struct mlx5e_channel *c, struct net_dim_cq_moder moder,
                    struct mlx5e_cq_param *param, struct mlx5e_cq *cq)
  >>>>>>> e5a3e25

Resolution is to take the second chunk and rename net_dim_cq_moder into
dim_cq_moder. Also the signature for mlx5e_open_cq() in ...

  drivers/net/ethernet/mellanox/mlx5/core/en.h +977

... and in mlx5e_open_xsk() ...

  drivers/net/ethernet/mellanox/mlx5/core/en/xsk/setup.c +64

... needs the same rename from net_dim_cq_moder into dim_cq_moder.

** Second conflict in drivers/net/ethernet/mellanox/mlx5/core/en_main.c:

  <<<<<<< HEAD
          int cpu = cpumask_first(mlx5_comp_irq_get_affinity_mask(priv->mdev, ix));
          struct dim_cq_moder icocq_moder = {0, 0};
          struct net_device *netdev = priv->netdev;
          struct mlx5e_channel *c;
          unsigned int irq;
  =======
          struct net_dim_cq_moder icocq_moder = {0, 0};
  >>>>>>> e5a3e25

Take the second chunk and rename net_dim_cq_moder into dim_cq_moder
as well.

Let me know if you run into any issues. Anyway, the main changes are:

1) Long-awaited AF_XDP support for mlx5e driver, from Maxim.

2) Addition of two new per-cgroup BPF hooks for getsockopt and
   setsockopt along with a new sockopt program type which allows more
   fine-grained pass/reject settings for containers. Also add a sock_ops
   callback that can be selectively enabled on a per-socket basis and is
   executed for every RTT to help tracking TCP statistics, both features
   from Stanislav.

3) Follow-up fix from loops in precision tracking which was not propagating
   precision marks and as a result verifier assumed that some branches were
   not taken and therefore wrongly removed as dead code, from Alexei.

4) Fix BPF cgroup release synchronization race which could lead to a
   double-free if a leaf's cgroup_bpf object is released and a new BPF
   program is attached to the one of ancestor cgroups in parallel, from Roman.

5) Support for bulking XDP_TX on veth devices which improves performance
   in some cases by around 9%, from Toshiaki.

6) Allow for lookups into BPF devmap and improve feedback when calling into
   bpf_redirect_map() as lookup is now performed right away in the helper
   itself, from Toke.

7) Add support for fq's Earliest Departure Time to the Host Bandwidth
   Manager (HBM) sample BPF program, from Lawrence.

8) Various cleanups and minor fixes all over the place from many others.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
…/git/mellanox/linux

Misc updates from mlx5-next branch:

1) Add the required HW definitions and structures for upcoming TLS
   support.
2) Add support for MCQI and MCQS hardware registers for fw version query.
3) Added hardware bits and structures definitions for sub-functions
4) Small code cleanup and improvement for PF pci driver.
5) Bluefield (ECPF) updates and refactoring for better E-Switch
   management on ECPF embedded CPU NIC:
   5.1) Consolidate querying eswitch number of VFs
   5.2) Register event handler at the correct E-Switch init stage
   5.3) Setup PF's inline mode and vlan pop when the ECPF is the
        E-Swtich manager ( the host PF is basically a VF ).
   5.4) Handle Vport UC address changes in switchdev mode.

6) Cleanup the rep and netdev reference when unloading IB rep.

Signed-off-by: Saeed Mahameed <saeedm@mellanox.com>

i# All conflicts fixed but you are still merging.
Using the MCQI and MCQS registers, we query the running and pending
fw version of the HCA.
The MCQS is queried with sequentially increasing component index, until
a component of type BOOT_IMG is found. Querying this component's version
using the MCQI register yields the running and pending fw version of the
HCA.

Querying MCQI for the pending fw version should be done only after
validating that such fw version exists. This is done my checking
'component update state' field in MCQS output.

Signed-off-by: Shay Agroskin <shayag@mellanox.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Saeed Mahameed <saeedm@mellanox.com>
The callback is invoked using 'devlink dev info <pci>' command and returns
the running and pending firmware version of the HCA and the name of the
kernel driver.

If there is a pending firmware version (a new version is burned but the
HCA still runs with the previous) it is returned as the stored
firmware version. Otherwise, the running version is returned for this
field.

Output example:
$ devlink dev info pci/0000:00:06.0
pci/0000:00:06.0:
  driver mlx5_core
  versions:
      fixed:
        fw.psid MT_0000000009
      running:
        fw.version 16.26.0100
      stored:
        fw.version 16.26.0100

Signed-off-by: Shay Agroskin <shayag@mellanox.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Saeed Mahameed <saeedm@mellanox.com>
Add synproxy support for nf_tables. This behaves like the iptables
synproxy target but it is structured in a way that allows us to propose
improvements in the future.

Signed-off-by: Fernando Fernandez Mancera <ffmancera@riseup.net>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Recognize GRE tunnels in received ICMP errors and
properly strip the tunnel headers.

Signed-off-by: Julian Anastasov <ja@ssi.bg>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Separate bridge meta key from nft_meta to meta_bridge to avoid a
dependency between the bridge module and nft_meta when using the bridge
API available through include/linux/if_bridge.h

Signed-off-by: wenxu <wenxu@ucloud.cn>
Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
nft_bridge_meta should not access the bridge internal API.

Signed-off-by: wenxu <wenxu@ucloud.cn>
Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
This new function allows you to fetch bridge pvid from packet path.

Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Acked-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com>
This patch allows you to match on the bridge port pvid, eg.

nft add rule bridge firewall zones counter meta ibrpvid 10

Signed-off-by: wenxu <wenxu@ucloud.cn>
Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
This new function allows you to fetch the bridge port vlan protocol.

Signed-off-by: wenxu <wenxu@ucloud.cn>
Acked-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
This patch allows you to match on bridge vlan protocol, eg.

nft add rule bridge firewall zones counter meta ibrvproto 0x8100

Signed-off-by: wenxu <wenxu@ucloud.cn>
Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
It's often inconvenient to switch sign of error when passing it into
libbpf_strerror_r. It's better for it to handle that automatically.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
vbatts pushed a commit that referenced this pull request Nov 12, 2020
commit fc846e9 upstream.

The `INSN_CONFIG` comedi instruction with sub-instruction code
`INSN_CONFIG_DIGITAL_TRIG` includes a base channel in `data[3]`. This is
used as a right shift amount for other bitmask values without being
checked.  Shift amounts greater than or equal to 32 will result in
undefined behavior.  Add code to deal with this, adjusting the checks
for invalid channels so that enabled channel bits that would have been
lost by shifting are also checked for validity.  Only channels 0 to 15
are valid.

Fixes: a8c66b6 ("staging: comedi: addi_apci_1500: rewrite the subdevice support functions")
Cc: <stable@vger.kernel.org> #4.0+: ef75e14: staging: comedi: verify array index is correct before using it
Cc: <stable@vger.kernel.org> #4.0+
Signed-off-by: Ian Abbott <abbotti@mev.co.uk>
Link: https://lore.kernel.org/r/20200717145257.112660-5-abbotti@mev.co.uk
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
vbatts pushed a commit that referenced this pull request Nov 12, 2020
commit 42ffb0b upstream.

There exists a deadlock with range_cyclic that has existed forever.  If
we loop around with a bio already built we could deadlock with a writer
who has the page locked that we're attempting to write but is waiting on
a page in our bio to be written out.  The task traces are as follows

  PID: 1329874  TASK: ffff889ebcdf3800  CPU: 33  COMMAND: "kworker/u113:5"
   #0 [ffffc900297bb658] __schedule at ffffffff81a4c33f
   #1 [ffffc900297bb6e0] schedule at ffffffff81a4c6e3
   #2 [ffffc900297bb6f8] io_schedule at ffffffff81a4ca42
   #3 [ffffc900297bb708] __lock_page at ffffffff811f145b
   #4 [ffffc900297bb798] __process_pages_contig at ffffffff814bc502
   #5 [ffffc900297bb8c8] lock_delalloc_pages at ffffffff814bc684
   #6 [ffffc900297bb900] find_lock_delalloc_range at ffffffff814be9ff
   #7 [ffffc900297bb9a0] writepage_delalloc at ffffffff814bebd0
   #8 [ffffc900297bba18] __extent_writepage at ffffffff814bfbf2
   #9 [ffffc900297bba98] extent_write_cache_pages at ffffffff814bffbd

  PID: 2167901  TASK: ffff889dc6a59c00  CPU: 14  COMMAND:
  "aio-dio-invalid"
   #0 [ffffc9003b50bb18] __schedule at ffffffff81a4c33f
   #1 [ffffc9003b50bba0] schedule at ffffffff81a4c6e3
   #2 [ffffc9003b50bbb8] io_schedule at ffffffff81a4ca42
   #3 [ffffc9003b50bbc8] wait_on_page_bit at ffffffff811f24d6
   #4 [ffffc9003b50bc60] prepare_pages at ffffffff814b05a7
   #5 [ffffc9003b50bcd8] btrfs_buffered_write at ffffffff814b1359
   #6 [ffffc9003b50bdb0] btrfs_file_write_iter at ffffffff814b5933
   #7 [ffffc9003b50be38] new_sync_write at ffffffff8128f6a8
   #8 [ffffc9003b50bec8] vfs_write at ffffffff81292b9d
   #9 [ffffc9003b50bf00] ksys_pwrite64 at ffffffff81293032

I used drgn to find the respective pages we were stuck on

page_entry.page 0xffffea00fbfc7500 index 8148 bit 15 pid 2167901
page_entry.page 0xffffea00f9bb7400 index 7680 bit 0 pid 1329874

As you can see the kworker is waiting for bit 0 (PG_locked) on index
7680, and aio-dio-invalid is waiting for bit 15 (PG_writeback) on index
8148.  aio-dio-invalid has 7680, and the kworker epd looks like the
following

  crash> struct extent_page_data ffffc900297bbbb0
  struct extent_page_data {
    bio = 0xffff889f747ed830,
    tree = 0xffff889eed6ba448,
    extent_locked = 0,
    sync_io = 0
  }

Probably worth mentioning as well that it waits for writeback of the
page to complete while holding a lock on it (at prepare_pages()).

Using drgn I walked the bio pages looking for page
0xffffea00fbfc7500 which is the one we're waiting for writeback on

  bio = Object(prog, 'struct bio', address=0xffff889f747ed830)
  for i in range(0, bio.bi_vcnt.value_()):
      bv = bio.bi_io_vec[i]
      if bv.bv_page.value_() == 0xffffea00fbfc7500:
	  print("FOUND IT")

which validated what I suspected.

The fix for this is simple, flush the epd before we loop back around to
the beginning of the file during writeout.

Fixes: b293f02 ("Btrfs: Add writepages support")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
vbatts pushed a commit that referenced this pull request Nov 12, 2020
…ast section

commit e822969 upstream.

Patch series "mm: fix max_pfn not falling on section boundary", v2.

Playing with different memory sizes for a x86-64 guest, I discovered that
some memmaps (highest section if max_mem does not fall on the section
boundary) are marked as being valid and online, but contain garbage.  We
have to properly initialize these memmaps.

Looking at /proc/kpageflags and friends, I found some more issues,
partially related to this.

This patch (of 3):

If max_pfn is not aligned to a section boundary, we can easily run into
BUGs.  This can e.g., be triggered on x86-64 under QEMU by specifying a
memory size that is not a multiple of 128MB (e.g., 4097MB, but also
4160MB).  I was told that on real HW, we can easily have this scenario
(esp., one of the main reasons sub-section hotadd of devmem was added).

The issue is, that we have a valid memmap (pfn_valid()) for the whole
section, and the whole section will be marked "online".
pfn_to_online_page() will succeed, but the memmap contains garbage.

E.g., doing a "./page-types -r -a 0x144001" when QEMU was started with "-m
4160M" - (see tools/vm/page-types.c):

[  200.476376] BUG: unable to handle page fault for address: fffffffffffffffe
[  200.477500] #PF: supervisor read access in kernel mode
[  200.478334] #PF: error_code(0x0000) - not-present page
[  200.479076] PGD 59614067 P4D 59614067 PUD 59616067 PMD 0
[  200.479557] Oops: 0000 [#4] SMP NOPTI
[  200.479875] CPU: 0 PID: 603 Comm: page-types Tainted: G      D W         5.5.0-rc1-next-20191209 torvalds#93
[  200.480646] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu4
[  200.481648] RIP: 0010:stable_page_flags+0x4d/0x410
[  200.482061] Code: f3 ff 41 89 c0 48 b8 00 00 00 00 01 00 00 00 45 84 c0 0f 85 cd 02 00 00 48 8b 53 08 48 8b 2b 48f
[  200.483644] RSP: 0018:ffffb139401cbe60 EFLAGS: 00010202
[  200.484091] RAX: fffffffffffffffe RBX: fffffbeec5100040 RCX: 0000000000000000
[  200.484697] RDX: 0000000000000001 RSI: ffffffff9535c7cd RDI: 0000000000000246
[  200.485313] RBP: ffffffffffffffff R08: 0000000000000000 R09: 0000000000000000
[  200.485917] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000144001
[  200.486523] R13: 00007ffd6ba55f48 R14: 00007ffd6ba55f40 R15: ffffb139401cbf08
[  200.487130] FS:  00007f68df717580(0000) GS:ffff9ec77fa00000(0000) knlGS:0000000000000000
[  200.487804] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  200.488295] CR2: fffffffffffffffe CR3: 0000000135d48000 CR4: 00000000000006f0
[  200.488897] Call Trace:
[  200.489115]  kpageflags_read+0xe9/0x140
[  200.489447]  proc_reg_read+0x3c/0x60
[  200.489755]  vfs_read+0xc2/0x170
[  200.490037]  ksys_pread64+0x65/0xa0
[  200.490352]  do_syscall_64+0x5c/0xa0
[  200.490665]  entry_SYSCALL_64_after_hwframe+0x49/0xbe

But it can be triggered much easier via "cat /proc/kpageflags > /dev/null"
after cold/hot plugging a DIMM to such a system:

[root@localhost ~]# cat /proc/kpageflags > /dev/null
[  111.517275] BUG: unable to handle page fault for address: fffffffffffffffe
[  111.517907] #PF: supervisor read access in kernel mode
[  111.518333] #PF: error_code(0x0000) - not-present page
[  111.518771] PGD a240e067 P4D a240e067 PUD a2410067 PMD 0

This patch fixes that by at least zero-ing out that memmap (so e.g.,
page_to_pfn() will not crash).  Commit 907ec5f ("mm: zero remaining
unavailable struct pages") tried to fix a similar issue, but forgot to
consider this special case.

After this patch, there are still problems to solve.  E.g., not all of
these pages falling into a memory hole will actually get initialized later
and set PageReserved - they are only zeroed out - but at least the
immediate crashes are gone.  A follow-up patch will take care of this.

Link: http://lkml.kernel.org/r/20191211163201.17179-2-david@redhat.com
Fixes: f7f9910 ("mm: stop zeroing memory during allocation in vmemmap")
Signed-off-by: David Hildenbrand <david@redhat.com>
Tested-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Bob Picco <bob.picco@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: <stable@vger.kernel.org>	[4.15+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
vbatts pushed a commit that referenced this pull request Nov 12, 2020
commit 58fe03d upstream.

Disabling a display on MST can potentially happen after the entire MST
topology has been removed, which means that we can't communicate with
the topology at all in this scenario. Likewise, this also means that we
can't properly update payloads on the topology and as such, it's a good
idea to ignore payload update failures when disabling displays.
Currently, amdgpu makes the mistake of halting the payload update
process when any payload update failures occur, resulting in leaving
DC's local copies of the payload tables out of date.

This ends up causing problems with hotplugging MST topologies, and
causes modesets on the second hotplug to fail like so:

[drm] Failed to updateMST allocation table forpipe idx:1
------------[ cut here ]------------
WARNING: CPU: 5 PID: 1511 at
drivers/gpu/drm/amd/amdgpu/../display/dc/core/dc_link.c:2677
update_mst_stream_alloc_table+0x11e/0x130 [amdgpu]
Modules linked in: cdc_ether usbnet fuse xt_conntrack nf_conntrack
nf_defrag_ipv6 libcrc32c nf_defrag_ipv4 ipt_REJECT nf_reject_ipv4
nft_counter nft_compat nf_tables nfnetlink tun bridge stp llc sunrpc
vfat fat wmi_bmof uvcvideo snd_hda_codec_realtek snd_hda_codec_generic
snd_hda_codec_hdmi videobuf2_vmalloc snd_hda_intel videobuf2_memops
videobuf2_v4l2 snd_intel_dspcfg videobuf2_common crct10dif_pclmul
snd_hda_codec videodev crc32_pclmul snd_hwdep snd_hda_core
ghash_clmulni_intel snd_seq mc joydev pcspkr snd_seq_device snd_pcm
sp5100_tco k10temp i2c_piix4 snd_timer thinkpad_acpi ledtrig_audio snd
wmi soundcore video i2c_scmi acpi_cpufreq ip_tables amdgpu(O)
rtsx_pci_sdmmc amd_iommu_v2 gpu_sched mmc_core i2c_algo_bit ttm
drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops cec drm
crc32c_intel serio_raw hid_multitouch r8152 mii nvme r8169 nvme_core
rtsx_pci pinctrl_amd
CPU: 5 PID: 1511 Comm: gnome-shell Tainted: G           O      5.5.0-rc7Lyude-Test+ #4
Hardware name: LENOVO FA495SIT26/FA495SIT26, BIOS R12ET22W(0.22 ) 01/31/2019
RIP: 0010:update_mst_stream_alloc_table+0x11e/0x130 [amdgpu]
Code: 28 00 00 00 75 2b 48 8d 65 e0 5b 41 5c 41 5d 41 5e 5d c3 0f b6 06
49 89 1c 24 41 88 44 24 08 0f b6 46 01 41 88 44 24 09 eb 93 <0f> 0b e9
2f ff ff ff e8 a6 82 a3 c2 66 0f 1f 44 00 00 0f 1f 44 00
RSP: 0018:ffffac428127f5b0 EFLAGS: 00010202
RAX: 0000000000000002 RBX: ffff8d1e166eee80 RCX: 0000000000000000
RDX: ffffac428127f668 RSI: ffff8d1e166eee80 RDI: ffffac428127f610
RBP: ffffac428127f640 R08: ffffffffc03d94a8 R09: 0000000000000000
R10: ffff8d1e24b02000 R11: ffffac428127f5b0 R12: ffff8d1e1b83d000
R13: ffff8d1e1bea0b08 R14: 0000000000000002 R15: 0000000000000002
FS:  00007fab23ffcd80(0000) GS:ffff8d1e28b40000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f151f1711e8 CR3: 00000005997c0000 CR4: 00000000003406e0
Call Trace:
 ? mutex_lock+0xe/0x30
 dc_link_allocate_mst_payload+0x9a/0x210 [amdgpu]
 ? dm_read_reg_func+0x39/0xb0 [amdgpu]
 ? core_link_enable_stream+0x656/0x730 [amdgpu]
 core_link_enable_stream+0x656/0x730 [amdgpu]
 dce110_apply_ctx_to_hw+0x58e/0x5d0 [amdgpu]
 ? dcn10_verify_allow_pstate_change_high+0x1d/0x280 [amdgpu]
 ? dcn10_wait_for_mpcc_disconnect+0x3c/0x130 [amdgpu]
 dc_commit_state+0x292/0x770 [amdgpu]
 ? add_timer+0x101/0x1f0
 ? ttm_bo_put+0x1a1/0x2f0 [ttm]
 amdgpu_dm_atomic_commit_tail+0xb59/0x1ff0 [amdgpu]
 ? amdgpu_move_blit.constprop.0+0xb8/0x1f0 [amdgpu]
 ? amdgpu_bo_move+0x16d/0x2b0 [amdgpu]
 ? ttm_bo_handle_move_mem+0x118/0x570 [ttm]
 ? ttm_bo_validate+0x134/0x150 [ttm]
 ? dm_plane_helper_prepare_fb+0x1b9/0x2a0 [amdgpu]
 ? _cond_resched+0x15/0x30
 ? wait_for_completion_timeout+0x38/0x160
 ? _cond_resched+0x15/0x30
 ? wait_for_completion_interruptible+0x33/0x190
 commit_tail+0x94/0x130 [drm_kms_helper]
 drm_atomic_helper_commit+0x113/0x140 [drm_kms_helper]
 drm_atomic_helper_set_config+0x70/0xb0 [drm_kms_helper]
 drm_mode_setcrtc+0x194/0x6a0 [drm]
 ? _cond_resched+0x15/0x30
 ? mutex_lock+0xe/0x30
 ? drm_mode_getcrtc+0x180/0x180 [drm]
 drm_ioctl_kernel+0xaa/0xf0 [drm]
 drm_ioctl+0x208/0x390 [drm]
 ? drm_mode_getcrtc+0x180/0x180 [drm]
 amdgpu_drm_ioctl+0x49/0x80 [amdgpu]
 do_vfs_ioctl+0x458/0x6d0
 ksys_ioctl+0x5e/0x90
 __x64_sys_ioctl+0x16/0x20
 do_syscall_64+0x55/0x1b0
 entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7fab2121f87b
Code: 0f 1e fa 48 8b 05 0d 96 2c 00 64 c7 00 26 00 00 00 48 c7 c0 ff ff
ff ff c3 66 0f 1f 44 00 00 f3 0f 1e fa b8 10 00 00 00 0f 05 <48> 3d 01
f0 ff ff 73 01 c3 48 8b 0d dd 95 2c 00 f7 d8 64 89 01 48
RSP: 002b:00007ffd045f9068 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007ffd045f90a0 RCX: 00007fab2121f87b
RDX: 00007ffd045f90a0 RSI: 00000000c06864a2 RDI: 000000000000000b
RBP: 00007ffd045f90a0 R08: 0000000000000000 R09: 000055dbd2985d10
R10: 000055dbd2196280 R11: 0000000000000246 R12: 00000000c06864a2
R13: 000000000000000b R14: 0000000000000000 R15: 000055dbd2196280
---[ end trace 6ea888c24d2059cd ]---

Note as well, I have only been able to reproduce this on setups with 2
MST displays.

Changes since v1:
* Don't return false when part 1 or part 2 of updating the payloads
  fails, we don't want to abort at any step of the process even if
  things fail

Reviewed-by: Mikita Lipski <Mikita.Lipski@amd.com>
Signed-off-by: Lyude Paul <lyude@redhat.com>
Acked-by: Harry Wentland <harry.wentland@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
vbatts pushed a commit that referenced this pull request Nov 12, 2020
commit 1d44616 upstream.

We don't need to hold the local pinctrl lock here to set irq wake on the
summary irq line. Doing so only leads to lockdep warnings instead of
protecting us from anything. Remove the locking.

 WARNING: possible circular locking dependency detected
 5.4.11 #2 Tainted: G        W
 ------------------------------------------------------
 cat/3083 is trying to acquire lock:
 ffffff81f4fa58c0 (&irq_desc_lock_class){-.-.}, at: __irq_get_desc_lock+0x64/0x94

 but task is already holding lock:
 ffffff81f4880c18 (&pctrl->lock){-.-.}, at: msm_gpio_irq_set_wake+0x48/0x7c

 which lock already depends on the new lock.

 the existing dependency chain (in reverse order) is:

 -> #1 (&pctrl->lock){-.-.}:
        _raw_spin_lock_irqsave+0x64/0x80
        msm_gpio_irq_ack+0x68/0xf4
        __irq_do_set_handler+0xe0/0x180
        __irq_set_handler+0x60/0x9c
        irq_domain_set_info+0x90/0xb4
        gpiochip_hierarchy_irq_domain_alloc+0x110/0x200
        __irq_domain_alloc_irqs+0x130/0x29c
        irq_create_fwspec_mapping+0x1f0/0x300
        irq_create_of_mapping+0x70/0x98
        of_irq_get+0xa4/0xd4
        spi_drv_probe+0x4c/0xb0
        really_probe+0x138/0x3f0
        driver_probe_device+0x70/0x140
        __device_attach_driver+0x9c/0x110
        bus_for_each_drv+0x88/0xd0
        __device_attach+0xb0/0x160
        device_initial_probe+0x20/0x2c
        bus_probe_device+0x34/0x94
        device_add+0x35c/0x3f0
        spi_add_device+0xbc/0x194
        of_register_spi_devices+0x2c8/0x408
        spi_register_controller+0x57c/0x6fc
        spi_geni_probe+0x260/0x328
        platform_drv_probe+0x90/0xb0
        really_probe+0x138/0x3f0
        driver_probe_device+0x70/0x140
        device_driver_attach+0x4c/0x6c
        __driver_attach+0xcc/0x154
        bus_for_each_dev+0x84/0xcc
        driver_attach+0x2c/0x38
        bus_add_driver+0x108/0x1fc
        driver_register+0x64/0xf8
        __platform_driver_register+0x4c/0x58
        spi_geni_driver_init+0x1c/0x24
        do_one_initcall+0x1a4/0x3e8
        do_initcall_level+0xb4/0xcc
        do_basic_setup+0x30/0x48
        kernel_init_freeable+0x124/0x1a8
        kernel_init+0x14/0x100
        ret_from_fork+0x10/0x18

 -> #0 (&irq_desc_lock_class){-.-.}:
        __lock_acquire+0xeb4/0x2388
        lock_acquire+0x1cc/0x210
        _raw_spin_lock_irqsave+0x64/0x80
        __irq_get_desc_lock+0x64/0x94
        irq_set_irq_wake+0x40/0x144
        msm_gpio_irq_set_wake+0x5c/0x7c
        set_irq_wake_real+0x40/0x5c
        irq_set_irq_wake+0x70/0x144
        cros_ec_rtc_suspend+0x38/0x4c
        platform_pm_suspend+0x34/0x60
        dpm_run_callback+0x64/0xcc
        __device_suspend+0x310/0x41c
        dpm_suspend+0xf8/0x298
        dpm_suspend_start+0x84/0xb4
        suspend_devices_and_enter+0xbc/0x620
        pm_suspend+0x210/0x348
        state_store+0xb0/0x108
        kobj_attr_store+0x14/0x24
        sysfs_kf_write+0x4c/0x64
        kernfs_fop_write+0x15c/0x1fc
        __vfs_write+0x54/0x18c
        vfs_write+0xe4/0x1a4
        ksys_write+0x7c/0xe4
        __arm64_sys_write+0x20/0x2c
        el0_svc_common+0xa8/0x160
        el0_svc_handler+0x7c/0x98
        el0_svc+0x8/0xc

 other info that might help us debug this:

  Possible unsafe locking scenario:

        CPU0                    CPU1
        ----                    ----
   lock(&pctrl->lock);
                                lock(&irq_desc_lock_class);
                                lock(&pctrl->lock);
   lock(&irq_desc_lock_class);

  *** DEADLOCK ***

 7 locks held by cat/3083:
  #0: ffffff81f06d1420 (sb_writers#7){.+.+}, at: vfs_write+0xd0/0x1a4
  #1: ffffff81c8935680 (&of->mutex){+.+.}, at: kernfs_fop_write+0x12c/0x1fc
  #2: ffffff81f4c322f0 (kn->count#337){.+.+}, at: kernfs_fop_write+0x134/0x1fc
  #3: ffffffe89a641d60 (system_transition_mutex){+.+.}, at: pm_suspend+0x108/0x348
  #4: ffffff81f190e970 (&dev->mutex){....}, at: __device_suspend+0x168/0x41c
  #5: ffffff81f183d8c0 (lock_class){-.-.}, at: __irq_get_desc_lock+0x64/0x94
  #6: ffffff81f4880c18 (&pctrl->lock){-.-.}, at: msm_gpio_irq_set_wake+0x48/0x7c

 stack backtrace:
 CPU: 4 PID: 3083 Comm: cat Tainted: G        W         5.4.11 #2
 Hardware name: Google Cheza (rev3+) (DT)
 Call trace:
  dump_backtrace+0x0/0x174
  show_stack+0x20/0x2c
  dump_stack+0xc8/0x124
  print_circular_bug+0x2ac/0x2c4
  check_noncircular+0x1a0/0x1a8
  __lock_acquire+0xeb4/0x2388
  lock_acquire+0x1cc/0x210
  _raw_spin_lock_irqsave+0x64/0x80
  __irq_get_desc_lock+0x64/0x94
  irq_set_irq_wake+0x40/0x144
  msm_gpio_irq_set_wake+0x5c/0x7c
  set_irq_wake_real+0x40/0x5c
  irq_set_irq_wake+0x70/0x144
  cros_ec_rtc_suspend+0x38/0x4c
  platform_pm_suspend+0x34/0x60
  dpm_run_callback+0x64/0xcc
  __device_suspend+0x310/0x41c
  dpm_suspend+0xf8/0x298
  dpm_suspend_start+0x84/0xb4
  suspend_devices_and_enter+0xbc/0x620
  pm_suspend+0x210/0x348
  state_store+0xb0/0x108
  kobj_attr_store+0x14/0x24
  sysfs_kf_write+0x4c/0x64
  kernfs_fop_write+0x15c/0x1fc
  __vfs_write+0x54/0x18c
  vfs_write+0xe4/0x1a4
  ksys_write+0x7c/0xe4
  __arm64_sys_write+0x20/0x2c
  el0_svc_common+0xa8/0x160
  el0_svc_handler+0x7c/0x98
  el0_svc+0x8/0xc

Fixes: 6aced33 ("pinctrl: msm: drop wake_irqs bitmap")
Cc: Douglas Anderson <dianders@chromium.org>
Cc: Brian Masney <masneyb@onstation.org>
Cc: Lina Iyer <ilina@codeaurora.org>
Cc: Maulik Shah <mkshah@codeaurora.org>
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Link: https://lore.kernel.org/r/20200121180950.36959-1-swboyd@chromium.org
Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
vbatts pushed a commit that referenced this pull request Nov 12, 2020
commit 2d5a2f9 upstream.

I see the following lockdep splat in the qcom pinctrl driver when
attempting to suspend the device.

 WARNING: possible recursive locking detected
 5.4.11 #3 Tainted: G        W
 --------------------------------------------
 cat/3074 is trying to acquire lock:
 ffffff81f49804c0 (&irq_desc_lock_class){-.-.}, at: __irq_get_desc_lock+0x64/0x94

 but task is already holding lock:
 ffffff81f1cc10c0 (&irq_desc_lock_class){-.-.}, at: __irq_get_desc_lock+0x64/0x94

 other info that might help us debug this:
  Possible unsafe locking scenario:

        CPU0
        ----
   lock(&irq_desc_lock_class);
   lock(&irq_desc_lock_class);

  *** DEADLOCK ***

  May be due to missing lock nesting notation

 6 locks held by cat/3074:
  #0: ffffff81f01d9420 (sb_writers#7){.+.+}, at: vfs_write+0xd0/0x1a4
  #1: ffffff81bd7d2080 (&of->mutex){+.+.}, at: kernfs_fop_write+0x12c/0x1fc
  #2: ffffff81f4c322f0 (kn->count#337){.+.+}, at: kernfs_fop_write+0x134/0x1fc
  #3: ffffffe411a41d60 (system_transition_mutex){+.+.}, at: pm_suspend+0x108/0x348
  #4: ffffff81f1c5e970 (&dev->mutex){....}, at: __device_suspend+0x168/0x41c
  #5: ffffff81f1cc10c0 (&irq_desc_lock_class){-.-.}, at: __irq_get_desc_lock+0x64/0x94

 stack backtrace:
 CPU: 5 PID: 3074 Comm: cat Tainted: G        W         5.4.11 #3
 Hardware name: Google Cheza (rev3+) (DT)
 Call trace:
  dump_backtrace+0x0/0x174
  show_stack+0x20/0x2c
  dump_stack+0xc8/0x124
  __lock_acquire+0x460/0x2388
  lock_acquire+0x1cc/0x210
  _raw_spin_lock_irqsave+0x64/0x80
  __irq_get_desc_lock+0x64/0x94
  irq_set_irq_wake+0x40/0x144
  qpnpint_irq_set_wake+0x28/0x34
  set_irq_wake_real+0x40/0x5c
  irq_set_irq_wake+0x70/0x144
  pm8941_pwrkey_suspend+0x34/0x44
  platform_pm_suspend+0x34/0x60
  dpm_run_callback+0x64/0xcc
  __device_suspend+0x310/0x41c
  dpm_suspend+0xf8/0x298
  dpm_suspend_start+0x84/0xb4
  suspend_devices_and_enter+0xbc/0x620
  pm_suspend+0x210/0x348
  state_store+0xb0/0x108
  kobj_attr_store+0x14/0x24
  sysfs_kf_write+0x4c/0x64
  kernfs_fop_write+0x15c/0x1fc
  __vfs_write+0x54/0x18c
  vfs_write+0xe4/0x1a4
  ksys_write+0x7c/0xe4
  __arm64_sys_write+0x20/0x2c
  el0_svc_common+0xa8/0x160
  el0_svc_handler+0x7c/0x98
  el0_svc+0x8/0xc

Set a lockdep class when we map the irq so that irq_set_wake() doesn't
warn about a lockdep bug that doesn't exist.

Fixes: 12a9eea ("spmi: pmic-arb: convert to v2 irq interfaces to support hierarchical IRQ chips")
Cc: Douglas Anderson <dianders@chromium.org>
Cc: Brian Masney <masneyb@onstation.org>
Cc: Lina Iyer <ilina@codeaurora.org>
Cc: Maulik Shah <mkshah@codeaurora.org>
Cc: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Link: https://lore.kernel.org/r/20200121183748.68662-1-swboyd@chromium.org
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
vbatts pushed a commit that referenced this pull request Nov 12, 2020
[ Upstream commit 1b710b1 ]

Sergey didn't like the locking order,

uart_port->lock  ->  tty_port->lock

uart_write (uart_port->lock)
  __uart_start
    pl011_start_tx
      pl011_tx_chars
        uart_write_wakeup
          tty_port_tty_wakeup
            tty_port_default
              tty_port_tty_get (tty_port->lock)

but those code is so old, and I have no clue how to de-couple it after
checking other locks in the splat. There is an onging effort to make all
printk() as deferred, so until that happens, workaround it for now as a
short-term fix.

LTP: starting iogen01 (export LTPROOT; rwtest -N iogen01 -i 120s -s
read,write -Da -Dv -n 2 500b:$TMPDIR/doio.f1.$$
1000b:$TMPDIR/doio.f2.$$)
WARNING: possible circular locking dependency detected
------------------------------------------------------
doio/49441 is trying to acquire lock:
ffff008b7cff7290 (&(&zone->lock)->rlock){..-.}, at: rmqueue+0x138/0x2050

but task is already holding lock:
60ff000822352818 (&pool->lock/1){-.-.}, at: start_flush_work+0xd8/0x3f0

  which lock already depends on the new lock.

  the existing dependency chain (in reverse order) is:

  -> #4 (&pool->lock/1){-.-.}:
       lock_acquire+0x320/0x360
       _raw_spin_lock+0x64/0x80
       __queue_work+0x4b4/0xa10
       queue_work_on+0xac/0x11c
       tty_schedule_flip+0x84/0xbc
       tty_flip_buffer_push+0x1c/0x28
       pty_write+0x98/0xd0
       n_tty_write+0x450/0x60c
       tty_write+0x338/0x474
       __vfs_write+0x88/0x214
       vfs_write+0x12c/0x1a4
       redirected_tty_write+0x90/0xdc
       do_loop_readv_writev+0x140/0x180
       do_iter_write+0xe0/0x10c
       vfs_writev+0x134/0x1cc
       do_writev+0xbc/0x130
       __arm64_sys_writev+0x58/0x8c
       el0_svc_handler+0x170/0x240
       el0_sync_handler+0x150/0x250
       el0_sync+0x164/0x180

  -> #3 (&(&port->lock)->rlock){-.-.}:
       lock_acquire+0x320/0x360
       _raw_spin_lock_irqsave+0x7c/0x9c
       tty_port_tty_get+0x24/0x60
       tty_port_default_wakeup+0x1c/0x3c
       tty_port_tty_wakeup+0x34/0x40
       uart_write_wakeup+0x28/0x44
       pl011_tx_chars+0x1b8/0x270
       pl011_start_tx+0x24/0x70
       __uart_start+0x5c/0x68
       uart_write+0x164/0x1c8
       do_output_char+0x33c/0x348
       n_tty_write+0x4bc/0x60c
       tty_write+0x338/0x474
       redirected_tty_write+0xc0/0xdc
       do_loop_readv_writev+0x140/0x180
       do_iter_write+0xe0/0x10c
       vfs_writev+0x134/0x1cc
       do_writev+0xbc/0x130
       __arm64_sys_writev+0x58/0x8c
       el0_svc_handler+0x170/0x240
       el0_sync_handler+0x150/0x250
       el0_sync+0x164/0x180

  -> #2 (&port_lock_key){-.-.}:
       lock_acquire+0x320/0x360
       _raw_spin_lock+0x64/0x80
       pl011_console_write+0xec/0x2cc
       console_unlock+0x794/0x96c
       vprintk_emit+0x260/0x31c
       vprintk_default+0x54/0x7c
       vprintk_func+0x218/0x254
       printk+0x7c/0xa4
       register_console+0x734/0x7b0
       uart_add_one_port+0x734/0x834
       pl011_register_port+0x6c/0xac
       sbsa_uart_probe+0x234/0x2ec
       platform_drv_probe+0xd4/0x124
       really_probe+0x250/0x71c
       driver_probe_device+0xb4/0x200
       __device_attach_driver+0xd8/0x188
       bus_for_each_drv+0xbc/0x110
       __device_attach+0x120/0x220
       device_initial_probe+0x20/0x2c
       bus_probe_device+0x54/0x100
       device_add+0xae8/0xc2c
       platform_device_add+0x278/0x3b8
       platform_device_register_full+0x238/0x2ac
       acpi_create_platform_device+0x2dc/0x3a8
       acpi_bus_attach+0x390/0x3cc
       acpi_bus_attach+0x108/0x3cc
       acpi_bus_attach+0x108/0x3cc
       acpi_bus_attach+0x108/0x3cc
       acpi_bus_scan+0x7c/0xb0
       acpi_scan_init+0xe4/0x304
       acpi_init+0x100/0x114
       do_one_initcall+0x348/0x6a0
       do_initcall_level+0x190/0x1fc
       do_basic_setup+0x34/0x4c
       kernel_init_freeable+0x19c/0x260
       kernel_init+0x18/0x338
       ret_from_fork+0x10/0x18

  -> #1 (console_owner){-...}:
       lock_acquire+0x320/0x360
       console_lock_spinning_enable+0x6c/0x7c
       console_unlock+0x4f8/0x96c
       vprintk_emit+0x260/0x31c
       vprintk_default+0x54/0x7c
       vprintk_func+0x218/0x254
       printk+0x7c/0xa4
       get_random_u64+0x1c4/0x1dc
       shuffle_pick_tail+0x40/0xac
       __free_one_page+0x424/0x710
       free_one_page+0x70/0x120
       __free_pages_ok+0x61c/0xa94
       __free_pages_core+0x1bc/0x294
       memblock_free_pages+0x38/0x48
       __free_pages_memory+0xcc/0xfc
       __free_memory_core+0x70/0x78
       free_low_memory_core_early+0x148/0x18c
       memblock_free_all+0x18/0x54
       mem_init+0xb4/0x17c
       mm_init+0x14/0x38
       start_kernel+0x19c/0x530

  -> #0 (&(&zone->lock)->rlock){..-.}:
       validate_chain+0xf6c/0x2e2c
       __lock_acquire+0x868/0xc2c
       lock_acquire+0x320/0x360
       _raw_spin_lock+0x64/0x80
       rmqueue+0x138/0x2050
       get_page_from_freelist+0x474/0x688
       __alloc_pages_nodemask+0x3b4/0x18dc
       alloc_pages_current+0xd0/0xe0
       alloc_slab_page+0x2b4/0x5e0
       new_slab+0xc8/0x6bc
       ___slab_alloc+0x3b8/0x640
       kmem_cache_alloc+0x4b4/0x588
       __debug_object_init+0x778/0x8b4
       debug_object_init_on_stack+0x40/0x50
       start_flush_work+0x16c/0x3f0
       __flush_work+0xb8/0x124
       flush_work+0x20/0x30
       xlog_cil_force_lsn+0x88/0x204 [xfs]
       xfs_log_force_lsn+0x128/0x1b8 [xfs]
       xfs_file_fsync+0x3c4/0x488 [xfs]
       vfs_fsync_range+0xb0/0xd0
       generic_write_sync+0x80/0xa0 [xfs]
       xfs_file_buffered_aio_write+0x66c/0x6e4 [xfs]
       xfs_file_write_iter+0x1a0/0x218 [xfs]
       __vfs_write+0x1cc/0x214
       vfs_write+0x12c/0x1a4
       ksys_write+0xb0/0x120
       __arm64_sys_write+0x54/0x88
       el0_svc_handler+0x170/0x240
       el0_sync_handler+0x150/0x250
       el0_sync+0x164/0x180

       other info that might help us debug this:

 Chain exists of:
   &(&zone->lock)->rlock --> &(&port->lock)->rlock --> &pool->lock/1

 Possible unsafe locking scenario:

       CPU0                    CPU1
       ----                    ----
  lock(&pool->lock/1);
                               lock(&(&port->lock)->rlock);
                               lock(&pool->lock/1);
  lock(&(&zone->lock)->rlock);

                *** DEADLOCK ***

4 locks held by doio/49441:
 #0: a0ff00886fc27408 (sb_writers#8){.+.+}, at: vfs_write+0x118/0x1a4
 #1: 8fff00080810dfe0 (&xfs_nondir_ilock_class){++++}, at:
xfs_ilock+0x2a8/0x300 [xfs]
 #2: ffff9000129f2390 (rcu_read_lock){....}, at:
rcu_lock_acquire+0x8/0x38
 #3: 60ff000822352818 (&pool->lock/1){-.-.}, at:
start_flush_work+0xd8/0x3f0

               stack backtrace:
CPU: 48 PID: 49441 Comm: doio Tainted: G        W
Hardware name: HPE Apollo 70             /C01_APACHE_MB         , BIOS
L50_5.13_1.11 06/18/2019
Call trace:
 dump_backtrace+0x0/0x248
 show_stack+0x20/0x2c
 dump_stack+0xe8/0x150
 print_circular_bug+0x368/0x380
 check_noncircular+0x28c/0x294
 validate_chain+0xf6c/0x2e2c
 __lock_acquire+0x868/0xc2c
 lock_acquire+0x320/0x360
 _raw_spin_lock+0x64/0x80
 rmqueue+0x138/0x2050
 get_page_from_freelist+0x474/0x688
 __alloc_pages_nodemask+0x3b4/0x18dc
 alloc_pages_current+0xd0/0xe0
 alloc_slab_page+0x2b4/0x5e0
 new_slab+0xc8/0x6bc
 ___slab_alloc+0x3b8/0x640
 kmem_cache_alloc+0x4b4/0x588
 __debug_object_init+0x778/0x8b4
 debug_object_init_on_stack+0x40/0x50
 start_flush_work+0x16c/0x3f0
 __flush_work+0xb8/0x124
 flush_work+0x20/0x30
 xlog_cil_force_lsn+0x88/0x204 [xfs]
 xfs_log_force_lsn+0x128/0x1b8 [xfs]
 xfs_file_fsync+0x3c4/0x488 [xfs]
 vfs_fsync_range+0xb0/0xd0
 generic_write_sync+0x80/0xa0 [xfs]
 xfs_file_buffered_aio_write+0x66c/0x6e4 [xfs]
 xfs_file_write_iter+0x1a0/0x218 [xfs]
 __vfs_write+0x1cc/0x214
 vfs_write+0x12c/0x1a4
 ksys_write+0xb0/0x120
 __arm64_sys_write+0x54/0x88
 el0_svc_handler+0x170/0x240
 el0_sync_handler+0x150/0x250
 el0_sync+0x164/0x180

Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Link: https://lore.kernel.org/r/1573679785-21068-1-git-send-email-cai@lca.pw
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Sasha Levin <sashal@kernel.org>
vbatts pushed a commit that referenced this pull request Nov 12, 2020
[ Upstream commit c34f6dc ]

I see the following lockdep splat in the qcom pinctrl driver when
attempting to suspend the device.

 ============================================
 WARNING: possible recursive locking detected
 5.4.2 #2 Tainted: G S
 --------------------------------------------
 cat/6536 is trying to acquire lock:
 ffffff814787ccc0 (&irq_desc_lock_class){-.-.}, at: __irq_get_desc_lock+0x64/0x94

 but task is already holding lock:
 ffffff81436740c0 (&irq_desc_lock_class){-.-.}, at: __irq_get_desc_lock+0x64/0x94

 other info that might help us debug this:
  Possible unsafe locking scenario:

        CPU0
        ----
   lock(&irq_desc_lock_class);
   lock(&irq_desc_lock_class);

  *** DEADLOCK ***

  May be due to missing lock nesting notation

 7 locks held by cat/6536:
  #0: ffffff8140e0c420 (sb_writers#7){.+.+}, at: vfs_write+0xc8/0x19c
  #1: ffffff8121eec480 (&of->mutex){+.+.}, at: kernfs_fop_write+0x128/0x1f4
  #2: ffffff8147cad668 (kn->count#263){.+.+}, at: kernfs_fop_write+0x130/0x1f4
  #3: ffffffd011446000 (system_transition_mutex){+.+.}, at: pm_suspend+0x108/0x354
  #4: ffffff814302b970 (&dev->mutex){....}, at: __device_suspend+0x16c/0x420
  #5: ffffff81436740c0 (&irq_desc_lock_class){-.-.}, at: __irq_get_desc_lock+0x64/0x94
  #6: ffffff81479b8c10 (&pctrl->lock){....}, at: msm_gpio_irq_set_wake+0x48/0x7c

 stack backtrace:
 CPU: 4 PID: 6536 Comm: cat Tainted: G S                5.4.2 #2
 Call trace:
  dump_backtrace+0x0/0x174
  show_stack+0x20/0x2c
  dump_stack+0xdc/0x144
  __lock_acquire+0x52c/0x2268
  lock_acquire+0x1dc/0x220
  _raw_spin_lock_irqsave+0x64/0x80
  __irq_get_desc_lock+0x64/0x94
  irq_set_irq_wake+0x40/0x144
  msm_gpio_irq_set_wake+0x5c/0x7c
  set_irq_wake_real+0x40/0x5c
  irq_set_irq_wake+0x70/0x144
  cros_ec_rtc_suspend+0x38/0x4c
  platform_pm_suspend+0x34/0x60
  dpm_run_callback+0x64/0xcc
  __device_suspend+0x314/0x420
  dpm_suspend+0xf8/0x298
  dpm_suspend_start+0x84/0xb4
  suspend_devices_and_enter+0xbc/0x628
  pm_suspend+0x214/0x354
  state_store+0xb0/0x108
  kobj_attr_store+0x14/0x24
  sysfs_kf_write+0x4c/0x64
  kernfs_fop_write+0x158/0x1f4
  __vfs_write+0x54/0x18c
  vfs_write+0xdc/0x19c
  ksys_write+0x7c/0xe4
  __arm64_sys_write+0x20/0x2c
  el0_svc_common+0xa8/0x160
  el0_svc_compat_handler+0x2c/0x38
  el0_svc_compat+0x8/0x10

This is because the msm_gpio_irq_set_wake() function calls
irq_set_irq_wake() as a backup in case the irq comes in during the path
to idle. Given that we're calling irqchip functions from within an
irqchip we need to set the lockdep class to be different for this child
controller vs. the default one that the parent irqchip gets.

This used to be done before this driver was converted to hierarchical
irq domains in commit e35a6ae ("pinctrl/msm: Setup GPIO chip in
hierarchy") via the gpiochip_irq_map() function. With hierarchical irq
domains this function has been replaced by
gpiochip_hierarchy_irq_domain_alloc(). Therefore, set the lockdep class
like was done previously in the irq domain path so we can avoid this
lockdep warning.

Fixes: fdd61a0 ("gpio: Add support for hierarchical IRQ domains")
Cc: Thierry Reding <treding@nvidia.com>
Cc: Brian Masney <masneyb@onstation.org>
Cc: Lina Iyer <ilina@codeaurora.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Maulik Shah <mkshah@codeaurora.org>
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Link: https://lore.kernel.org/r/20200114231103.85641-1-swboyd@chromium.org
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
rata pushed a commit that referenced this pull request Nov 27, 2020
When requeueing all requests on the device request queue to the blocklayer
we might get to an ERP (error recovery) request that is a copy of an
original CQR.

Those requests do not have blocklayer request information or a pointer to
the dasd_queue set. When trying to access those data it will lead to a
null pointer dereference in dasd_requeue_all_requests().

Fix by checking if the request is an ERP request that can simply be
ignored. The blocklayer request will be requeued by the original CQR that
is on the device queue right behind the ERP request.

Fixes: 9487cfd ("s390/dasd: fix handling of internal requests")
Cc: <stable@vger.kernel.org> #4.16
Signed-off-by: Stefan Haberland <sth@linux.ibm.com>
Reviewed-by: Jan Hoeppner <hoeppner@linux.ibm.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
rata pushed a commit that referenced this pull request Nov 27, 2020
This fix is for a failure that occurred in the DWARF unwind perf test.

Stack unwinders may probe memory when looking for frames.

Memory sanitizer will poison and track uninitialized memory on the
stack, and on the heap if the value is copied to the heap.

This can lead to false memory sanitizer failures for the use of an
uninitialized value.

Avoid this problem by removing the poison on the copied stack.

The full msan failure with track origins looks like:

==2168==WARNING: MemorySanitizer: use-of-uninitialized-value
    #0 0x559ceb10755b in handle_cfi elfutils/libdwfl/frame_unwind.c:648:8
    #1 0x559ceb105448 in __libdwfl_frame_unwind elfutils/libdwfl/frame_unwind.c:741:4
    #2 0x559ceb0ece90 in dwfl_thread_getframes elfutils/libdwfl/dwfl_frame.c:435:7
    #3 0x559ceb0ec6b7 in get_one_thread_frames_cb elfutils/libdwfl/dwfl_frame.c:379:10
    #4 0x559ceb0ec6b7 in get_one_thread_cb elfutils/libdwfl/dwfl_frame.c:308:17
    #5 0x559ceb0ec6b7 in dwfl_getthreads elfutils/libdwfl/dwfl_frame.c:283:17
    #6 0x559ceb0ec6b7 in getthread elfutils/libdwfl/dwfl_frame.c:354:14
    #7 0x559ceb0ec6b7 in dwfl_getthread_frames elfutils/libdwfl/dwfl_frame.c:388:10
    #8 0x559ceaff6ae6 in unwind__get_entries tools/perf/util/unwind-libdw.c:236:8
    #9 0x559ceabc9dbc in test_dwarf_unwind__thread tools/perf/tests/dwarf-unwind.c:111:8
    #10 0x559ceabca5cf in test_dwarf_unwind__compare tools/perf/tests/dwarf-unwind.c:138:26
    #11 0x7f812a6865b0 in bsearch (libc.so.6+0x4e5b0)
    #12 0x559ceabca871 in test_dwarf_unwind__krava_3 tools/perf/tests/dwarf-unwind.c:162:2
    #13 0x559ceabca926 in test_dwarf_unwind__krava_2 tools/perf/tests/dwarf-unwind.c:169:9
    #14 0x559ceabca946 in test_dwarf_unwind__krava_1 tools/perf/tests/dwarf-unwind.c:174:9
    #15 0x559ceabcae12 in test__dwarf_unwind tools/perf/tests/dwarf-unwind.c:211:8
    #16 0x559ceabbc4ab in run_test tools/perf/tests/builtin-test.c:418:9
    #17 0x559ceabbc4ab in test_and_print tools/perf/tests/builtin-test.c:448:9
    torvalds#18 0x559ceabbac70 in __cmd_test tools/perf/tests/builtin-test.c:669:4
    torvalds#19 0x559ceabbac70 in cmd_test tools/perf/tests/builtin-test.c:815:9
    torvalds#20 0x559cea960e30 in run_builtin tools/perf/perf.c:313:11
    torvalds#21 0x559cea95fbce in handle_internal_command tools/perf/perf.c:365:8
    torvalds#22 0x559cea95fbce in run_argv tools/perf/perf.c:409:2
    torvalds#23 0x559cea95fbce in main tools/perf/perf.c:539:3

  Uninitialized value was stored to memory at
    #0 0x559ceb106acf in __libdwfl_frame_reg_set elfutils/libdwfl/frame_unwind.c:77:22
    #1 0x559ceb106acf in handle_cfi elfutils/libdwfl/frame_unwind.c:627:13
    #2 0x559ceb105448 in __libdwfl_frame_unwind elfutils/libdwfl/frame_unwind.c:741:4
    #3 0x559ceb0ece90 in dwfl_thread_getframes elfutils/libdwfl/dwfl_frame.c:435:7
    #4 0x559ceb0ec6b7 in get_one_thread_frames_cb elfutils/libdwfl/dwfl_frame.c:379:10
    #5 0x559ceb0ec6b7 in get_one_thread_cb elfutils/libdwfl/dwfl_frame.c:308:17
    #6 0x559ceb0ec6b7 in dwfl_getthreads elfutils/libdwfl/dwfl_frame.c:283:17
    #7 0x559ceb0ec6b7 in getthread elfutils/libdwfl/dwfl_frame.c:354:14
    #8 0x559ceb0ec6b7 in dwfl_getthread_frames elfutils/libdwfl/dwfl_frame.c:388:10
    #9 0x559ceaff6ae6 in unwind__get_entries tools/perf/util/unwind-libdw.c:236:8
    #10 0x559ceabc9dbc in test_dwarf_unwind__thread tools/perf/tests/dwarf-unwind.c:111:8
    #11 0x559ceabca5cf in test_dwarf_unwind__compare tools/perf/tests/dwarf-unwind.c:138:26
    #12 0x7f812a6865b0 in bsearch (libc.so.6+0x4e5b0)
    #13 0x559ceabca871 in test_dwarf_unwind__krava_3 tools/perf/tests/dwarf-unwind.c:162:2
    #14 0x559ceabca926 in test_dwarf_unwind__krava_2 tools/perf/tests/dwarf-unwind.c:169:9
    #15 0x559ceabca946 in test_dwarf_unwind__krava_1 tools/perf/tests/dwarf-unwind.c:174:9
    #16 0x559ceabcae12 in test__dwarf_unwind tools/perf/tests/dwarf-unwind.c:211:8
    #17 0x559ceabbc4ab in run_test tools/perf/tests/builtin-test.c:418:9
    torvalds#18 0x559ceabbc4ab in test_and_print tools/perf/tests/builtin-test.c:448:9
    torvalds#19 0x559ceabbac70 in __cmd_test tools/perf/tests/builtin-test.c:669:4
    torvalds#20 0x559ceabbac70 in cmd_test tools/perf/tests/builtin-test.c:815:9
    torvalds#21 0x559cea960e30 in run_builtin tools/perf/perf.c:313:11
    torvalds#22 0x559cea95fbce in handle_internal_command tools/perf/perf.c:365:8
    torvalds#23 0x559cea95fbce in run_argv tools/perf/perf.c:409:2
    torvalds#24 0x559cea95fbce in main tools/perf/perf.c:539:3

  Uninitialized value was stored to memory at
    #0 0x559ceb106a54 in handle_cfi elfutils/libdwfl/frame_unwind.c:613:9
    #1 0x559ceb105448 in __libdwfl_frame_unwind elfutils/libdwfl/frame_unwind.c:741:4
    #2 0x559ceb0ece90 in dwfl_thread_getframes elfutils/libdwfl/dwfl_frame.c:435:7
    #3 0x559ceb0ec6b7 in get_one_thread_frames_cb elfutils/libdwfl/dwfl_frame.c:379:10
    #4 0x559ceb0ec6b7 in get_one_thread_cb elfutils/libdwfl/dwfl_frame.c:308:17
    #5 0x559ceb0ec6b7 in dwfl_getthreads elfutils/libdwfl/dwfl_frame.c:283:17
    #6 0x559ceb0ec6b7 in getthread elfutils/libdwfl/dwfl_frame.c:354:14
    #7 0x559ceb0ec6b7 in dwfl_getthread_frames elfutils/libdwfl/dwfl_frame.c:388:10
    #8 0x559ceaff6ae6 in unwind__get_entries tools/perf/util/unwind-libdw.c:236:8
    #9 0x559ceabc9dbc in test_dwarf_unwind__thread tools/perf/tests/dwarf-unwind.c:111:8
    #10 0x559ceabca5cf in test_dwarf_unwind__compare tools/perf/tests/dwarf-unwind.c:138:26
    #11 0x7f812a6865b0 in bsearch (libc.so.6+0x4e5b0)
    #12 0x559ceabca871 in test_dwarf_unwind__krava_3 tools/perf/tests/dwarf-unwind.c:162:2
    #13 0x559ceabca926 in test_dwarf_unwind__krava_2 tools/perf/tests/dwarf-unwind.c:169:9
    #14 0x559ceabca946 in test_dwarf_unwind__krava_1 tools/perf/tests/dwarf-unwind.c:174:9
    #15 0x559ceabcae12 in test__dwarf_unwind tools/perf/tests/dwarf-unwind.c:211:8
    #16 0x559ceabbc4ab in run_test tools/perf/tests/builtin-test.c:418:9
    #17 0x559ceabbc4ab in test_and_print tools/perf/tests/builtin-test.c:448:9
    torvalds#18 0x559ceabbac70 in __cmd_test tools/perf/tests/builtin-test.c:669:4
    torvalds#19 0x559ceabbac70 in cmd_test tools/perf/tests/builtin-test.c:815:9
    torvalds#20 0x559cea960e30 in run_builtin tools/perf/perf.c:313:11
    torvalds#21 0x559cea95fbce in handle_internal_command tools/perf/perf.c:365:8
    torvalds#22 0x559cea95fbce in run_argv tools/perf/perf.c:409:2
    torvalds#23 0x559cea95fbce in main tools/perf/perf.c:539:3

  Uninitialized value was stored to memory at
    #0 0x559ceaff8800 in memory_read tools/perf/util/unwind-libdw.c:156:10
    #1 0x559ceb10f053 in expr_eval elfutils/libdwfl/frame_unwind.c:501:13
    #2 0x559ceb1060cc in handle_cfi elfutils/libdwfl/frame_unwind.c:603:18
    #3 0x559ceb105448 in __libdwfl_frame_unwind elfutils/libdwfl/frame_unwind.c:741:4
    #4 0x559ceb0ece90 in dwfl_thread_getframes elfutils/libdwfl/dwfl_frame.c:435:7
    #5 0x559ceb0ec6b7 in get_one_thread_frames_cb elfutils/libdwfl/dwfl_frame.c:379:10
    #6 0x559ceb0ec6b7 in get_one_thread_cb elfutils/libdwfl/dwfl_frame.c:308:17
    #7 0x559ceb0ec6b7 in dwfl_getthreads elfutils/libdwfl/dwfl_frame.c:283:17
    #8 0x559ceb0ec6b7 in getthread elfutils/libdwfl/dwfl_frame.c:354:14
    #9 0x559ceb0ec6b7 in dwfl_getthread_frames elfutils/libdwfl/dwfl_frame.c:388:10
    #10 0x559ceaff6ae6 in unwind__get_entries tools/perf/util/unwind-libdw.c:236:8
    #11 0x559ceabc9dbc in test_dwarf_unwind__thread tools/perf/tests/dwarf-unwind.c:111:8
    #12 0x559ceabca5cf in test_dwarf_unwind__compare tools/perf/tests/dwarf-unwind.c:138:26
    #13 0x7f812a6865b0 in bsearch (libc.so.6+0x4e5b0)
    #14 0x559ceabca871 in test_dwarf_unwind__krava_3 tools/perf/tests/dwarf-unwind.c:162:2
    #15 0x559ceabca926 in test_dwarf_unwind__krava_2 tools/perf/tests/dwarf-unwind.c:169:9
    #16 0x559ceabca946 in test_dwarf_unwind__krava_1 tools/perf/tests/dwarf-unwind.c:174:9
    #17 0x559ceabcae12 in test__dwarf_unwind tools/perf/tests/dwarf-unwind.c:211:8
    torvalds#18 0x559ceabbc4ab in run_test tools/perf/tests/builtin-test.c:418:9
    torvalds#19 0x559ceabbc4ab in test_and_print tools/perf/tests/builtin-test.c:448:9
    torvalds#20 0x559ceabbac70 in __cmd_test tools/perf/tests/builtin-test.c:669:4
    torvalds#21 0x559ceabbac70 in cmd_test tools/perf/tests/builtin-test.c:815:9
    torvalds#22 0x559cea960e30 in run_builtin tools/perf/perf.c:313:11
    torvalds#23 0x559cea95fbce in handle_internal_command tools/perf/perf.c:365:8
    torvalds#24 0x559cea95fbce in run_argv tools/perf/perf.c:409:2
    torvalds#25 0x559cea95fbce in main tools/perf/perf.c:539:3

  Uninitialized value was stored to memory at
    #0 0x559cea9027d9 in __msan_memcpy llvm/llvm-project/compiler-rt/lib/msan/msan_interceptors.cpp:1558:3
    #1 0x559cea9d2185 in sample_ustack tools/perf/arch/x86/tests/dwarf-unwind.c:41:2
    #2 0x559cea9d202c in test__arch_unwind_sample tools/perf/arch/x86/tests/dwarf-unwind.c:72:9
    #3 0x559ceabc9cbd in test_dwarf_unwind__thread tools/perf/tests/dwarf-unwind.c:106:6
    #4 0x559ceabca5cf in test_dwarf_unwind__compare tools/perf/tests/dwarf-unwind.c:138:26
    #5 0x7f812a6865b0 in bsearch (libc.so.6+0x4e5b0)
    #6 0x559ceabca871 in test_dwarf_unwind__krava_3 tools/perf/tests/dwarf-unwind.c:162:2
    #7 0x559ceabca926 in test_dwarf_unwind__krava_2 tools/perf/tests/dwarf-unwind.c:169:9
    #8 0x559ceabca946 in test_dwarf_unwind__krava_1 tools/perf/tests/dwarf-unwind.c:174:9
    #9 0x559ceabcae12 in test__dwarf_unwind tools/perf/tests/dwarf-unwind.c:211:8
    #10 0x559ceabbc4ab in run_test tools/perf/tests/builtin-test.c:418:9
    #11 0x559ceabbc4ab in test_and_print tools/perf/tests/builtin-test.c:448:9
    #12 0x559ceabbac70 in __cmd_test tools/perf/tests/builtin-test.c:669:4
    #13 0x559ceabbac70 in cmd_test tools/perf/tests/builtin-test.c:815:9
    #14 0x559cea960e30 in run_builtin tools/perf/perf.c:313:11
    #15 0x559cea95fbce in handle_internal_command tools/perf/perf.c:365:8
    #16 0x559cea95fbce in run_argv tools/perf/perf.c:409:2
    #17 0x559cea95fbce in main tools/perf/perf.c:539:3

  Uninitialized value was created by an allocation of 'bf' in the stack frame of function 'perf_event__synthesize_mmap_events'
    #0 0x559ceafc5f60 in perf_event__synthesize_mmap_events tools/perf/util/synthetic-events.c:445

SUMMARY: MemorySanitizer: use-of-uninitialized-value elfutils/libdwfl/frame_unwind.c:648:8 in handle_cfi
Signed-off-by: Ian Rogers <irogers@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: clang-built-linux@googlegroups.com
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sandeep Dasgupta <sdasgup@google.com>
Cc: Stephane Eranian <eranian@google.com>
Link: http://lore.kernel.org/lkml/20201113182053.754625-1-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
rata pushed a commit that referenced this pull request Nov 27, 2020
Actually, burst size is equal to '1 << desc->rqcfg.brst_size'.
we should use burst size, not desc->rqcfg.brst_size.

dma memcpy performance on Rockchip RV1126
@ 1512MHz A7, 1056MHz LPDDR3, 200MHz DMA:

dmatest:

/# echo dma0chan0 > /sys/module/dmatest/parameters/channel
/# echo 4194304 > /sys/module/dmatest/parameters/test_buf_size
/# echo 8 > /sys/module/dmatest/parameters/iterations
/# echo y > /sys/module/dmatest/parameters/norandom
/# echo y > /sys/module/dmatest/parameters/verbose
/# echo 1 > /sys/module/dmatest/parameters/run

dmatest: dma0chan0-copy0: result #1: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000
dmatest: dma0chan0-copy0: result #2: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000
dmatest: dma0chan0-copy0: result #3: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000
dmatest: dma0chan0-copy0: result #4: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000
dmatest: dma0chan0-copy0: result #5: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000
dmatest: dma0chan0-copy0: result #6: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000
dmatest: dma0chan0-copy0: result #7: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000
dmatest: dma0chan0-copy0: result #8: 'test passed' with src_off=0x0 dst_off=0x0 len=0x400000

Before:

  dmatest: dma0chan0-copy0: summary 8 tests, 0 failures 48 iops 200338 KB/s (0)

After this patch:

  dmatest: dma0chan0-copy0: summary 8 tests, 0 failures 179 iops 734873 KB/s (0)

After this patch and increase dma clk to 400MHz:

  dmatest: dma0chan0-copy0: summary 8 tests, 0 failures 259 iops 1062929 KB/s (0)

Signed-off-by: Sugar Zhang <sugar.zhang@rock-chips.com>
Link: https://lore.kernel.org/r/1605326106-55681-1-git-send-email-sugar.zhang@rock-chips.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
mauriciovasquezbernal pushed a commit that referenced this pull request Nov 12, 2021
Ido Schimmel says:

====================
mlxsw: Support multiple RIF MAC prefixes

Currently, mlxsw enforces that all the netdevs used as router interfaces
(RIFs) have the same MAC prefix (e.g., same 38 MSBs in Spectrum-1).
Otherwise, an error is returned to user space with extack. This patchset
relaxes the limitation through the use of RIF MAC profiles.

A RIF MAC profile is a hardware entity that represents a particular MAC
prefix which multiple RIFs can reference. Therefore, the number of
possible MAC prefixes is no longer one, but the number of profiles
supported by the device.

The ability to change the MAC of a particular netdev is useful, for
example, for users who use the netdev to connect to an upstream provider
that performs MAC filtering. Currently, such users are either forced to
negotiate with the provider or change the MAC address of all other
netdevs so that they share the same prefix.

Patchset overview:

Patches #1-#3 are preparations.

Patch #4 adds actual support for RIF MAC profiles.

Patch #5 exposes RIF MAC profiles as a devlink resource, so that user
space has visibility into the maximum number of profiles and current
occupancy. Useful for debugging and testing (next 3 patches).

Patches #6-#8 add both scale and functional tests.

Patch #9 removes tests that validated the previous limitation. It is now
covered by patch #6 for devices that support a single profile.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
mauriciovasquezbernal pushed a commit that referenced this pull request Nov 12, 2021
We got the following lockdep splat while running fstests (specifically
btrfs/003 and btrfs/020 in a row) with the new rc.  This was uncovered
by 87579e9 ("loop: use worker per cgroup instead of kworker") which
converted loop to using workqueues, which comes with lockdep
annotations that don't exist with kworkers.  The lockdep splat is as
follows:

  WARNING: possible circular locking dependency detected
  5.14.0-rc2-custom+ torvalds#34 Not tainted
  ------------------------------------------------------
  losetup/156417 is trying to acquire lock:
  ffff9c7645b02d38 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x84/0x600

  but task is already holding lock:
  ffff9c7647395468 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x650 [loop]

  which lock already depends on the new lock.

  the existing dependency chain (in reverse order) is:

  -> #5 (&lo->lo_mutex){+.+.}-{3:3}:
	 __mutex_lock+0xba/0x7c0
	 lo_open+0x28/0x60 [loop]
	 blkdev_get_whole+0x28/0xf0
	 blkdev_get_by_dev.part.0+0x168/0x3c0
	 blkdev_open+0xd2/0xe0
	 do_dentry_open+0x163/0x3a0
	 path_openat+0x74d/0xa40
	 do_filp_open+0x9c/0x140
	 do_sys_openat2+0xb1/0x170
	 __x64_sys_openat+0x54/0x90
	 do_syscall_64+0x3b/0x90
	 entry_SYSCALL_64_after_hwframe+0x44/0xae

  -> #4 (&disk->open_mutex){+.+.}-{3:3}:
	 __mutex_lock+0xba/0x7c0
	 blkdev_get_by_dev.part.0+0xd1/0x3c0
	 blkdev_get_by_path+0xc0/0xd0
	 btrfs_scan_one_device+0x52/0x1f0 [btrfs]
	 btrfs_control_ioctl+0xac/0x170 [btrfs]
	 __x64_sys_ioctl+0x83/0xb0
	 do_syscall_64+0x3b/0x90
	 entry_SYSCALL_64_after_hwframe+0x44/0xae

  -> #3 (uuid_mutex){+.+.}-{3:3}:
	 __mutex_lock+0xba/0x7c0
	 btrfs_rm_device+0x48/0x6a0 [btrfs]
	 btrfs_ioctl+0x2d1c/0x3110 [btrfs]
	 __x64_sys_ioctl+0x83/0xb0
	 do_syscall_64+0x3b/0x90
	 entry_SYSCALL_64_after_hwframe+0x44/0xae

  -> #2 (sb_writers#11){.+.+}-{0:0}:
	 lo_write_bvec+0x112/0x290 [loop]
	 loop_process_work+0x25f/0xcb0 [loop]
	 process_one_work+0x28f/0x5d0
	 worker_thread+0x55/0x3c0
	 kthread+0x140/0x170
	 ret_from_fork+0x22/0x30

  -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}:
	 process_one_work+0x266/0x5d0
	 worker_thread+0x55/0x3c0
	 kthread+0x140/0x170
	 ret_from_fork+0x22/0x30

  -> #0 ((wq_completion)loop0){+.+.}-{0:0}:
	 __lock_acquire+0x1130/0x1dc0
	 lock_acquire+0xf5/0x320
	 flush_workqueue+0xae/0x600
	 drain_workqueue+0xa0/0x110
	 destroy_workqueue+0x36/0x250
	 __loop_clr_fd+0x9a/0x650 [loop]
	 lo_ioctl+0x29d/0x780 [loop]
	 block_ioctl+0x3f/0x50
	 __x64_sys_ioctl+0x83/0xb0
	 do_syscall_64+0x3b/0x90
	 entry_SYSCALL_64_after_hwframe+0x44/0xae

  other info that might help us debug this:
  Chain exists of:
    (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex
   Possible unsafe locking scenario:
	 CPU0                    CPU1
	 ----                    ----
    lock(&lo->lo_mutex);
				 lock(&disk->open_mutex);
				 lock(&lo->lo_mutex);
    lock((wq_completion)loop0);

   *** DEADLOCK ***
  1 lock held by losetup/156417:
   #0: ffff9c7647395468 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x650 [loop]

  stack backtrace:
  CPU: 8 PID: 156417 Comm: losetup Not tainted 5.14.0-rc2-custom+ torvalds#34
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
  Call Trace:
   dump_stack_lvl+0x57/0x72
   check_noncircular+0x10a/0x120
   __lock_acquire+0x1130/0x1dc0
   lock_acquire+0xf5/0x320
   ? flush_workqueue+0x84/0x600
   flush_workqueue+0xae/0x600
   ? flush_workqueue+0x84/0x600
   drain_workqueue+0xa0/0x110
   destroy_workqueue+0x36/0x250
   __loop_clr_fd+0x9a/0x650 [loop]
   lo_ioctl+0x29d/0x780 [loop]
   ? __lock_acquire+0x3a0/0x1dc0
   ? update_dl_rq_load_avg+0x152/0x360
   ? lock_is_held_type+0xa5/0x120
   ? find_held_lock.constprop.0+0x2b/0x80
   block_ioctl+0x3f/0x50
   __x64_sys_ioctl+0x83/0xb0
   do_syscall_64+0x3b/0x90
   entry_SYSCALL_64_after_hwframe+0x44/0xae
  RIP: 0033:0x7f645884de6b

Usually the uuid_mutex exists to protect the fs_devices that map
together all of the devices that match a specific uuid.  In rm_device
we're messing with the uuid of a device, so it makes sense to protect
that here.

However in doing that it pulls in a whole host of lockdep dependencies,
as we call mnt_may_write() on the sb before we grab the uuid_mutex, thus
we end up with the dependency chain under the uuid_mutex being added
under the normal sb write dependency chain, which causes problems with
loop devices.

We don't need the uuid mutex here however.  If we call
btrfs_scan_one_device() before we scratch the super block we will find
the fs_devices and not find the device itself and return EBUSY because
the fs_devices is open.  If we call it after the scratch happens it will
not appear to be a valid btrfs file system.

We do not need to worry about other fs_devices modifying operations here
because we're protected by the exclusive operations locking.

So drop the uuid_mutex here in order to fix the lockdep splat.

A more detailed explanation from the discussion:

We are worried about rm and scan racing with each other, before this
change we'll zero the device out under the UUID mutex so when scan does
run it'll make sure that it can go through the whole device scan thing
without rm messing with us.

We aren't worried if the scratch happens first, because the result is we
don't think this is a btrfs device and we bail out.

The only case we are concerned with is we scratch _after_ scan is able
to read the superblock and gets a seemingly valid super block, so lets
consider this case.

Scan will call device_list_add() with the device we're removing.  We'll
call find_fsid_with_metadata_uuid() and get our fs_devices for this
UUID.  At this point we lock the fs_devices->device_list_mutex.  This is
what protects us in this case, but we have two cases here.

1. We aren't to the device removal part of the RM.  We found our device,
   and device name matches our path, we go down and we set total_devices
   to our super number of devices, which doesn't affect anything because
   we haven't done the remove yet.

2. We are past the device removal part, which is protected by the
   device_list_mutex.  Scan doesn't find the device, it goes down and
   does the

   if (fs_devices->opened)
	   return -EBUSY;

   check and we bail out.

Nothing about this situation is ideal, but the lockdep splat is real,
and the fix is safe, tho admittedly a bit scary looking.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ copy more from the discussion ]
Signed-off-by: David Sterba <dsterba@suse.com>
mauriciovasquezbernal pushed a commit that referenced this pull request Nov 12, 2021
For device removal and replace we call btrfs_find_device_by_devspec,
which if we give it a device path and nothing else will call
btrfs_get_dev_args_from_path, which opens the block device and reads the
super block and then looks up our device based on that.

However at this point we're holding the sb write "lock", so reading the
block device pulls in the dependency of ->open_mutex, which produces the
following lockdep splat

======================================================
WARNING: possible circular locking dependency detected
5.14.0-rc2+ torvalds#405 Not tainted
------------------------------------------------------
losetup/11576 is trying to acquire lock:
ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0

but task is already holding lock:
ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop]

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #4 (&lo->lo_mutex){+.+.}-{3:3}:
       __mutex_lock+0x7d/0x750
       lo_open+0x28/0x60 [loop]
       blkdev_get_whole+0x25/0xf0
       blkdev_get_by_dev.part.0+0x168/0x3c0
       blkdev_open+0xd2/0xe0
       do_dentry_open+0x161/0x390
       path_openat+0x3cc/0xa20
       do_filp_open+0x96/0x120
       do_sys_openat2+0x7b/0x130
       __x64_sys_openat+0x46/0x70
       do_syscall_64+0x38/0x90
       entry_SYSCALL_64_after_hwframe+0x44/0xae

-> #3 (&disk->open_mutex){+.+.}-{3:3}:
       __mutex_lock+0x7d/0x750
       blkdev_get_by_dev.part.0+0x56/0x3c0
       blkdev_get_by_path+0x98/0xa0
       btrfs_get_bdev_and_sb+0x1b/0xb0
       btrfs_find_device_by_devspec+0x12b/0x1c0
       btrfs_rm_device+0x127/0x610
       btrfs_ioctl+0x2a31/0x2e70
       __x64_sys_ioctl+0x80/0xb0
       do_syscall_64+0x38/0x90
       entry_SYSCALL_64_after_hwframe+0x44/0xae

-> #2 (sb_writers#12){.+.+}-{0:0}:
       lo_write_bvec+0xc2/0x240 [loop]
       loop_process_work+0x238/0xd00 [loop]
       process_one_work+0x26b/0x560
       worker_thread+0x55/0x3c0
       kthread+0x140/0x160
       ret_from_fork+0x1f/0x30

-> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}:
       process_one_work+0x245/0x560
       worker_thread+0x55/0x3c0
       kthread+0x140/0x160
       ret_from_fork+0x1f/0x30

-> #0 ((wq_completion)loop0){+.+.}-{0:0}:
       __lock_acquire+0x10ea/0x1d90
       lock_acquire+0xb5/0x2b0
       flush_workqueue+0x91/0x5e0
       drain_workqueue+0xa0/0x110
       destroy_workqueue+0x36/0x250
       __loop_clr_fd+0x9a/0x660 [loop]
       block_ioctl+0x3f/0x50
       __x64_sys_ioctl+0x80/0xb0
       do_syscall_64+0x38/0x90
       entry_SYSCALL_64_after_hwframe+0x44/0xae

other info that might help us debug this:

Chain exists of:
  (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex

 Possible unsafe locking scenario:

       CPU0                    CPU1
       ----                    ----
  lock(&lo->lo_mutex);
                               lock(&disk->open_mutex);
                               lock(&lo->lo_mutex);
  lock((wq_completion)loop0);

 *** DEADLOCK ***

1 lock held by losetup/11576:
 #0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop]

stack backtrace:
CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ torvalds#405
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:
 dump_stack_lvl+0x57/0x72
 check_noncircular+0xcf/0xf0
 ? stack_trace_save+0x3b/0x50
 __lock_acquire+0x10ea/0x1d90
 lock_acquire+0xb5/0x2b0
 ? flush_workqueue+0x67/0x5e0
 ? lockdep_init_map_type+0x47/0x220
 flush_workqueue+0x91/0x5e0
 ? flush_workqueue+0x67/0x5e0
 ? verify_cpu+0xf0/0x100
 drain_workqueue+0xa0/0x110
 destroy_workqueue+0x36/0x250
 __loop_clr_fd+0x9a/0x660 [loop]
 ? blkdev_ioctl+0x8d/0x2a0
 block_ioctl+0x3f/0x50
 __x64_sys_ioctl+0x80/0xb0
 do_syscall_64+0x38/0x90
 entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f31b02404cb

Instead what we want to do is populate our device lookup args before we
grab any locks, and then pass these args into btrfs_rm_device().  From
there we can find the device and do the appropriate removal.

Suggested-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
mauriciovasquezbernal pushed a commit that referenced this pull request Nov 12, 2021
Attempting to defragment a Btrfs file containing a transparent huge page
immediately deadlocks with the following stack trace:

  #0  context_switch (kernel/sched/core.c:4940:2)
  #1  __schedule (kernel/sched/core.c:6287:8)
  #2  schedule (kernel/sched/core.c:6366:3)
  #3  io_schedule (kernel/sched/core.c:8389:2)
  #4  wait_on_page_bit_common (mm/filemap.c:1356:4)
  #5  __lock_page (mm/filemap.c:1648:2)
  #6  lock_page (./include/linux/pagemap.h:625:3)
  #7  pagecache_get_page (mm/filemap.c:1910:4)
  #8  find_or_create_page (./include/linux/pagemap.h:420:9)
  #9  defrag_prepare_one_page (fs/btrfs/ioctl.c:1068:9)
  #10 defrag_one_range (fs/btrfs/ioctl.c:1326:14)
  #11 defrag_one_cluster (fs/btrfs/ioctl.c:1421:9)
  #12 btrfs_defrag_file (fs/btrfs/ioctl.c:1523:9)
  #13 btrfs_ioctl_defrag (fs/btrfs/ioctl.c:3117:9)
  #14 btrfs_ioctl (fs/btrfs/ioctl.c:4872:10)
  #15 vfs_ioctl (fs/ioctl.c:51:10)
  #16 __do_sys_ioctl (fs/ioctl.c:874:11)
  #17 __se_sys_ioctl (fs/ioctl.c:860:1)
  torvalds#18 __x64_sys_ioctl (fs/ioctl.c:860:1)
  torvalds#19 do_syscall_x64 (arch/x86/entry/common.c:50:14)
  torvalds#20 do_syscall_64 (arch/x86/entry/common.c:80:7)
  torvalds#21 entry_SYSCALL_64+0x7c/0x15b (arch/x86/entry/entry_64.S:113)

A huge page is represented by a compound page, which consists of a
struct page for each PAGE_SIZE page within the huge page. The first
struct page is the "head page", and the remaining are "tail pages".

Defragmentation attempts to lock each page in the range. However,
lock_page() on a tail page actually locks the corresponding head page.
So, if defragmentation tries to lock more than one struct page in a
compound page, it tries to lock the same head page twice and deadlocks
with itself.

Ideally, we should be able to defragment transparent huge pages.
However, THP for filesystems is currently read-only, so a lot of code is
not ready to use huge pages for I/O. For now, let's just return
ETXTBUSY.

This can be reproduced with the following on a kernel with
CONFIG_READ_ONLY_THP_FOR_FS=y:

  $ cat create_thp_file.c
  #include <fcntl.h>
  #include <stdbool.h>
  #include <stdio.h>
  #include <stdint.h>
  #include <stdlib.h>
  #include <unistd.h>
  #include <sys/mman.h>

  static const char zeroes[1024 * 1024];
  static const size_t FILE_SIZE = 2 * 1024 * 1024;

  int main(int argc, char **argv)
  {
          if (argc != 2) {
                  fprintf(stderr, "usage: %s PATH\n", argv[0]);
                  return EXIT_FAILURE;
          }
          int fd = creat(argv[1], 0777);
          if (fd == -1) {
                  perror("creat");
                  return EXIT_FAILURE;
          }
          size_t written = 0;
          while (written < FILE_SIZE) {
                  ssize_t ret = write(fd, zeroes,
                                      sizeof(zeroes) < FILE_SIZE - written ?
                                      sizeof(zeroes) : FILE_SIZE - written);
                  if (ret < 0) {
                          perror("write");
                          return EXIT_FAILURE;
                  }
                  written += ret;
          }
          close(fd);
          fd = open(argv[1], O_RDONLY);
          if (fd == -1) {
                  perror("open");
                  return EXIT_FAILURE;
          }

          /*
           * Reserve some address space so that we can align the file mapping to
           * the huge page size.
           */
          void *placeholder_map = mmap(NULL, FILE_SIZE * 2, PROT_NONE,
                                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
          if (placeholder_map == MAP_FAILED) {
                  perror("mmap (placeholder)");
                  return EXIT_FAILURE;
          }

          void *aligned_address =
                  (void *)(((uintptr_t)placeholder_map + FILE_SIZE - 1) & ~(FILE_SIZE - 1));

          void *map = mmap(aligned_address, FILE_SIZE, PROT_READ | PROT_EXEC,
                           MAP_SHARED | MAP_FIXED, fd, 0);
          if (map == MAP_FAILED) {
                  perror("mmap");
                  return EXIT_FAILURE;
          }
          if (madvise(map, FILE_SIZE, MADV_HUGEPAGE) < 0) {
                  perror("madvise");
                  return EXIT_FAILURE;
          }

          char *line = NULL;
          size_t line_capacity = 0;
          FILE *smaps_file = fopen("/proc/self/smaps", "r");
          if (!smaps_file) {
                  perror("fopen");
                  return EXIT_FAILURE;
          }
          for (;;) {
                  for (size_t off = 0; off < FILE_SIZE; off += 4096)
                          ((volatile char *)map)[off];

                  ssize_t ret;
                  bool this_mapping = false;
                  while ((ret = getline(&line, &line_capacity, smaps_file)) > 0) {
                          unsigned long start, end, huge;
                          if (sscanf(line, "%lx-%lx", &start, &end) == 2) {
                                  this_mapping = (start <= (uintptr_t)map &&
                                                  (uintptr_t)map < end);
                          } else if (this_mapping &&
                                     sscanf(line, "FilePmdMapped: %ld", &huge) == 1 &&
                                     huge > 0) {
                                  return EXIT_SUCCESS;
                          }
                  }

                  sleep(6);
                  rewind(smaps_file);
                  fflush(smaps_file);
          }
  }
  $ ./create_thp_file huge
  $ btrfs fi defrag -czstd ./huge

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
mauriciovasquezbernal pushed a commit that referenced this pull request Dec 10, 2021
Host crashes when pci_enable_atomic_ops_to_root() is called for VFs with
virtual buses. The virtual buses added to SR-IOV have bus->self set to NULL
and host crashes due to this.

  PID: 4481   TASK: ffff89c6941b0000  CPU: 53  COMMAND: "bash"
  ...
   #3 [ffff9a9481713808] oops_end at ffffffffb9025cd6
   #4 [ffff9a9481713828] page_fault_oops at ffffffffb906e417
   #5 [ffff9a9481713888] exc_page_fault at ffffffffb9a0ad14
   #6 [ffff9a94817138b0] asm_exc_page_fault at ffffffffb9c00ace
      [exception RIP: pcie_capability_read_dword+28]
      RIP: ffffffffb952fd5c  RSP: ffff9a9481713960  RFLAGS: 00010246
      RAX: 0000000000000001  RBX: ffff89c6b1096000  RCX: 0000000000000000
      RDX: ffff9a9481713990  RSI: 0000000000000024  RDI: 0000000000000000
      RBP: 0000000000000080   R8: 0000000000000008   R9: ffff89c64341a2f8
      R10: 0000000000000002  R11: 0000000000000000  R12: ffff89c648bab000
      R13: 0000000000000000  R14: 0000000000000000  R15: ffff89c648bab0c8
      ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
   #7 [ffff9a9481713988] pci_enable_atomic_ops_to_root at ffffffffb95359a6
   #8 [ffff9a94817139c0] bnxt_qplib_determine_atomics at ffffffffc08c1a33 [bnxt_re]
   #9 [ffff9a94817139d0] bnxt_re_dev_init at ffffffffc08ba2d1 [bnxt_re]

Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit in Device
Control 2 is reserved for VFs.  The PF value applies to all associated VFs.

Return -EINVAL if pci_enable_atomic_ops_to_root() is called for a VF.

Link: https://lore.kernel.org/r/1631354585-16597-1-git-send-email-selvin.xavier@broadcom.com
Fixes: 35f5ace ("RDMA/bnxt_re: Enable global atomic ops if platform supports")
Fixes: 430a236 ("PCI: Add pci_enable_atomic_ops_to_root()")
Signed-off-by: Selvin Xavier <selvin.xavier@broadcom.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Andy Gospodarek <gospo@broadcom.com>
mauriciovasquezbernal pushed a commit that referenced this pull request Dec 10, 2021
It is generally unsafe to call put_device() with dpm_list_mtx held,
because the given device's release routine may carry out an action
depending on that lock which then may deadlock, so modify the
system-wide suspend and resume of devices to always drop dpm_list_mtx
before calling put_device() (and adjust white space somewhat while
at it).

For instance, this prevents the following splat from showing up in
the kernel log after a system resume in certain configurations:

[ 3290.969514] ======================================================
[ 3290.969517] WARNING: possible circular locking dependency detected
[ 3290.969519] 5.15.0+ #2420 Tainted: G S
[ 3290.969523] ------------------------------------------------------
[ 3290.969525] systemd-sleep/4553 is trying to acquire lock:
[ 3290.969529] ffff888117ab1138 ((wq_completion)hci0#2){+.+.}-{0:0}, at: flush_workqueue+0x87/0x4a0
[ 3290.969554]
               but task is already holding lock:
[ 3290.969556] ffffffff8280fca8 (dpm_list_mtx){+.+.}-{3:3}, at: dpm_resume+0x12e/0x3e0
[ 3290.969571]
               which lock already depends on the new lock.

[ 3290.969573]
               the existing dependency chain (in reverse order) is:
[ 3290.969575]
               -> #3 (dpm_list_mtx){+.+.}-{3:3}:
[ 3290.969583]        __mutex_lock+0x9d/0xa30
[ 3290.969591]        device_pm_add+0x2e/0xe0
[ 3290.969597]        device_add+0x4d5/0x8f0
[ 3290.969605]        hci_conn_add_sysfs+0x43/0xb0 [bluetooth]
[ 3290.969689]        hci_conn_complete_evt.isra.71+0x124/0x750 [bluetooth]
[ 3290.969747]        hci_event_packet+0xd6c/0x28a0 [bluetooth]
[ 3290.969798]        hci_rx_work+0x213/0x640 [bluetooth]
[ 3290.969842]        process_one_work+0x2aa/0x650
[ 3290.969851]        worker_thread+0x39/0x400
[ 3290.969859]        kthread+0x142/0x170
[ 3290.969865]        ret_from_fork+0x22/0x30
[ 3290.969872]
               -> #2 (&hdev->lock){+.+.}-{3:3}:
[ 3290.969881]        __mutex_lock+0x9d/0xa30
[ 3290.969887]        hci_event_packet+0xba/0x28a0 [bluetooth]
[ 3290.969935]        hci_rx_work+0x213/0x640 [bluetooth]
[ 3290.969978]        process_one_work+0x2aa/0x650
[ 3290.969985]        worker_thread+0x39/0x400
[ 3290.969993]        kthread+0x142/0x170
[ 3290.969999]        ret_from_fork+0x22/0x30
[ 3290.970004]
               -> #1 ((work_completion)(&hdev->rx_work)){+.+.}-{0:0}:
[ 3290.970013]        process_one_work+0x27d/0x650
[ 3290.970020]        worker_thread+0x39/0x400
[ 3290.970028]        kthread+0x142/0x170
[ 3290.970033]        ret_from_fork+0x22/0x30
[ 3290.970038]
               -> #0 ((wq_completion)hci0#2){+.+.}-{0:0}:
[ 3290.970047]        __lock_acquire+0x15cb/0x1b50
[ 3290.970054]        lock_acquire+0x26c/0x300
[ 3290.970059]        flush_workqueue+0xae/0x4a0
[ 3290.970066]        drain_workqueue+0xa1/0x130
[ 3290.970073]        destroy_workqueue+0x34/0x1f0
[ 3290.970081]        hci_release_dev+0x49/0x180 [bluetooth]
[ 3290.970130]        bt_host_release+0x1d/0x30 [bluetooth]
[ 3290.970195]        device_release+0x33/0x90
[ 3290.970201]        kobject_release+0x63/0x160
[ 3290.970211]        dpm_resume+0x164/0x3e0
[ 3290.970215]        dpm_resume_end+0xd/0x20
[ 3290.970220]        suspend_devices_and_enter+0x1a4/0xba0
[ 3290.970229]        pm_suspend+0x26b/0x310
[ 3290.970236]        state_store+0x42/0x90
[ 3290.970243]        kernfs_fop_write_iter+0x135/0x1b0
[ 3290.970251]        new_sync_write+0x125/0x1c0
[ 3290.970257]        vfs_write+0x360/0x3c0
[ 3290.970263]        ksys_write+0xa7/0xe0
[ 3290.970269]        do_syscall_64+0x3a/0x80
[ 3290.970276]        entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3290.970284]
               other info that might help us debug this:

[ 3290.970285] Chain exists of:
                 (wq_completion)hci0#2 --> &hdev->lock --> dpm_list_mtx

[ 3290.970297]  Possible unsafe locking scenario:

[ 3290.970299]        CPU0                    CPU1
[ 3290.970300]        ----                    ----
[ 3290.970302]   lock(dpm_list_mtx);
[ 3290.970306]                                lock(&hdev->lock);
[ 3290.970310]                                lock(dpm_list_mtx);
[ 3290.970314]   lock((wq_completion)hci0#2);
[ 3290.970319]
                *** DEADLOCK ***

[ 3290.970321] 7 locks held by systemd-sleep/4553:
[ 3290.970325]  #0: ffff888103bcd448 (sb_writers#4){.+.+}-{0:0}, at: ksys_write+0xa7/0xe0
[ 3290.970341]  #1: ffff888115a14488 (&of->mutex){+.+.}-{3:3}, at: kernfs_fop_write_iter+0x103/0x1b0
[ 3290.970355]  #2: ffff888100f719e0 (kn->active#233){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x10c/0x1b0
[ 3290.970369]  #3: ffffffff82661048 (autosleep_lock){+.+.}-{3:3}, at: state_store+0x12/0x90
[ 3290.970384]  #4: ffffffff82658ac8 (system_transition_mutex){+.+.}-{3:3}, at: pm_suspend+0x9f/0x310
[ 3290.970399]  #5: ffffffff827f2a48 (acpi_scan_lock){+.+.}-{3:3}, at: acpi_suspend_begin+0x4c/0x80
[ 3290.970416]  #6: ffffffff8280fca8 (dpm_list_mtx){+.+.}-{3:3}, at: dpm_resume+0x12e/0x3e0
[ 3290.970428]
               stack backtrace:
[ 3290.970431] CPU: 3 PID: 4553 Comm: systemd-sleep Tainted: G S                5.15.0+ #2420
[ 3290.970438] Hardware name: Dell Inc. XPS 13 9380/0RYJWW, BIOS 1.5.0 06/03/2019
[ 3290.970441] Call Trace:
[ 3290.970446]  dump_stack_lvl+0x44/0x57
[ 3290.970454]  check_noncircular+0x105/0x120
[ 3290.970468]  ? __lock_acquire+0x15cb/0x1b50
[ 3290.970474]  __lock_acquire+0x15cb/0x1b50
[ 3290.970487]  lock_acquire+0x26c/0x300
[ 3290.970493]  ? flush_workqueue+0x87/0x4a0
[ 3290.970503]  ? __raw_spin_lock_init+0x3b/0x60
[ 3290.970510]  ? lockdep_init_map_type+0x58/0x240
[ 3290.970519]  flush_workqueue+0xae/0x4a0
[ 3290.970526]  ? flush_workqueue+0x87/0x4a0
[ 3290.970544]  ? drain_workqueue+0xa1/0x130
[ 3290.970552]  drain_workqueue+0xa1/0x130
[ 3290.970561]  destroy_workqueue+0x34/0x1f0
[ 3290.970572]  hci_release_dev+0x49/0x180 [bluetooth]
[ 3290.970624]  bt_host_release+0x1d/0x30 [bluetooth]
[ 3290.970687]  device_release+0x33/0x90
[ 3290.970695]  kobject_release+0x63/0x160
[ 3290.970705]  dpm_resume+0x164/0x3e0
[ 3290.970710]  ? dpm_resume_early+0x251/0x3b0
[ 3290.970718]  dpm_resume_end+0xd/0x20
[ 3290.970723]  suspend_devices_and_enter+0x1a4/0xba0
[ 3290.970737]  pm_suspend+0x26b/0x310
[ 3290.970746]  state_store+0x42/0x90
[ 3290.970755]  kernfs_fop_write_iter+0x135/0x1b0
[ 3290.970764]  new_sync_write+0x125/0x1c0
[ 3290.970777]  vfs_write+0x360/0x3c0
[ 3290.970785]  ksys_write+0xa7/0xe0
[ 3290.970794]  do_syscall_64+0x3a/0x80
[ 3290.970803]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3290.970811] RIP: 0033:0x7f41b1328164
[ 3290.970819] Code: 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 80 00 00 00 00 8b 05 4a d2 2c 00 48 63 ff 85 c0 75 13 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 f3 c3 66 90 55 53 48 89 d5 48 89 f3 48 83
[ 3290.970824] RSP: 002b:00007ffe6ae21b28 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
[ 3290.970831] RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007f41b1328164
[ 3290.970836] RDX: 0000000000000004 RSI: 000055965e651070 RDI: 0000000000000004
[ 3290.970839] RBP: 000055965e651070 R08: 000055965e64f390 R09: 00007f41b1e3d1c0
[ 3290.970843] R10: 000000000000000a R11: 0000000000000246 R12: 0000000000000004
[ 3290.970846] R13: 0000000000000001 R14: 000055965e64f2b0 R15: 0000000000000004

Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
mauriciovasquezbernal pushed a commit that referenced this pull request Dec 10, 2021
Patch series "Solve silent data loss caused by poisoned page cache (shmem/tmpfs)", v5.

When discussing the patch that splits page cache THP in order to offline
the poisoned page, Noaya mentioned there is a bigger problem [1] that
prevents this from working since the page cache page will be truncated
if uncorrectable errors happen.  By looking this deeper it turns out
this approach (truncating poisoned page) may incur silent data loss for
all non-readonly filesystems if the page is dirty.  It may be worse for
in-memory filesystem, e.g.  shmem/tmpfs since the data blocks are
actually gone.

To solve this problem we could keep the poisoned dirty page in page
cache then notify the users on any later access, e.g.  page fault,
read/write, etc.  The clean page could be truncated as is since they can
be reread from disk later on.

The consequence is the filesystems may find poisoned page and manipulate
it as healthy page since all the filesystems actually don't check if the
page is poisoned or not in all the relevant paths except page fault.  In
general, we need make the filesystems be aware of poisoned page before
we could keep the poisoned page in page cache in order to solve the data
loss problem.

To make filesystems be aware of poisoned page we should consider:

 - The page should be not written back: clearing dirty flag could
   prevent from writeback.

 - The page should not be dropped (it shows as a clean page) by drop
   caches or other callers: the refcount pin from hwpoison could prevent
   from invalidating (called by cache drop, inode cache shrinking, etc),
   but it doesn't avoid invalidation in DIO path.

 - The page should be able to get truncated/hole punched/unlinked: it
   works as it is.

 - Notify users when the page is accessed, e.g. read/write, page fault
   and other paths (compression, encryption, etc).

The scope of the last one is huge since almost all filesystems need do
it once a page is returned from page cache lookup.  There are a couple
of options to do it:

 1. Check hwpoison flag for every path, the most straightforward way.

 2. Return NULL for poisoned page from page cache lookup, the most
    callsites check if NULL is returned, this should have least work I
    think. But the error handling in filesystems just return -ENOMEM,
    the error code will incur confusion to the users obviously.

 3. To improve #2, we could return error pointer, e.g. ERR_PTR(-EIO),
    but this will involve significant amount of code change as well
    since all the paths need check if the pointer is ERR or not just
    like option #1.

I did prototypes for both #1 and #3, but it seems #3 may require more
changes than #1.  For #3 ERR_PTR will be returned so all the callers
need to check the return value otherwise invalid pointer may be
dereferenced, but not all callers really care about the content of the
page, for example, partial truncate which just sets the truncated range
in one page to 0.  So for such paths it needs additional modification if
ERR_PTR is returned.  And if the callers have their own way to handle
the problematic pages we need to add a new FGP flag to tell FGP
functions to return the pointer to the page.

It may happen very rarely, but once it happens the consequence (data
corruption) could be very bad and it is very hard to debug.  It seems
this problem had been slightly discussed before, but seems no action was
taken at that time.  [2]

As the aforementioned investigation, it needs huge amount of work to
solve the potential data loss for all filesystems.  But it is much
easier for in-memory filesystems and such filesystems actually suffer
more than others since even the data blocks are gone due to truncating.
So this patchset starts from shmem/tmpfs by taking option #1.

TODO:
* The unpoison has been broken since commit 0ed950d ("mm,hwpoison: make
  get_hwpoison_page() call get_any_page()"), and this patch series make
  refcount check for unpoisoning shmem page fail.
* Expand to other filesystems.  But I haven't heard feedback from filesystem
  developers yet.

Patch breakdown:
Patch #1: cleanup, depended by patch #2
Patch #2: fix THP with hwpoisoned subpage(s) PMD map bug
Patch #3: coding style cleanup
Patch #4: refactor and preparation.
Patch #5: keep the poisoned page in page cache and handle such case for all
          the paths.
Patch #6: the previous patches unblock page cache THP split, so this patch
          add page cache THP split support.

This patch (of 4):

A minor cleanup to the indent.

Link: https://lkml.kernel.org/r/20211020210755.23964-1-shy828301@gmail.com
Link: https://lkml.kernel.org/r/20211020210755.23964-4-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mauriciovasquezbernal pushed a commit that referenced this pull request Dec 10, 2021
After removing /dev/kmem, sanitizing /proc/kcore and handling /dev/mem,
this series tackles the last sane way how a VM could accidentially
access logically unplugged memory managed by a virtio-mem device:
/proc/vmcore

When dumping memory via "makedumpfile", PG_offline pages, used by
virtio-mem to flag logically unplugged memory, are already properly
excluded; however, especially when accessing/copying /proc/vmcore "the
usual way", we can still end up reading logically unplugged memory part
of a virtio-mem device.

Patch #1-#3 are cleanups.  Patch #4 extends the existing
oldmem_pfn_is_ram mechanism.  Patch #5-#7 are virtio-mem refactorings
for patch #8, which implements the virtio-mem logic to query the state
of device blocks.

Patch #8:
 "Although virtio-mem currently supports reading unplugged memory in the
  hypervisor, this will change in the future, indicated to the device
  via a new feature flag. We similarly sanitized /proc/kcore access
  recently.
  [...]
  Distributions that support virtio-mem+kdump have to make sure that the
  virtio_mem module will be part of the kdump kernel or the kdump
  initrd; dracut was recently [2] extended to include virtio-mem in the
  generated initrd. As long as no special kdump kernels are used, this
  will automatically make sure that virtio-mem will be around in the
  kdump initrd and sanitize /proc/vmcore access -- with dracut"

This is the last remaining bit to support
VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE [3] in the Linux implementation of
virtio-mem.

Note: this is best-effort.  We'll never be able to control what runs
inside the second kernel, really, but we also don't have to care: we
only care about sane setups where we don't want our VM getting zapped
once we touch the wrong memory location while dumping.  While we usually
expect sane setups to use "makedumfile", nothing really speaks against
just copying /proc/vmcore, especially in environments where HWpoisioning
isn't typically expected.  Also, we really don't want to put all our
trust completely on the memmap, so sanitizing also makes sense when just
using "makedumpfile".

[1] https://lkml.kernel.org/r/20210526093041.8800-1-david@redhat.com
[2] dracutdevs/dracut#1157
[3] https://lists.oasis-open.org/archives/virtio-comment/202109/msg00021.html

This patch (of 9):

The callback is only used for the vmcore nowadays.

Link: https://lkml.kernel.org/r/20211005121430.30136-1-david@redhat.com
Link: https://lkml.kernel.org/r/20211005121430.30136-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Boris Ostrovsky <boris.ostrvsky@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mauriciovasquezbernal pushed a commit that referenced this pull request Jan 6, 2022
The fixed commit attempts to close inject.output even if it was never
opened e.g.

  $ perf record uname
  Linux
  [ perf record: Woken up 1 times to write data ]
  [ perf record: Captured and wrote 0.002 MB perf.data (7 samples) ]
  $ perf inject -i perf.data --vm-time-correlation=dry-run
  Segmentation fault (core dumped)
  $ gdb --quiet perf
  Reading symbols from perf...
  (gdb) r inject -i perf.data --vm-time-correlation=dry-run
  Starting program: /home/ahunter/bin/perf inject -i perf.data --vm-time-correlation=dry-run
  [Thread debugging using libthread_db enabled]
  Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

  Program received signal SIGSEGV, Segmentation fault.
  0x00007eff8afeef5b in _IO_new_fclose (fp=0x0) at iofclose.c:48
  48      iofclose.c: No such file or directory.
  (gdb) bt
  #0  0x00007eff8afeef5b in _IO_new_fclose (fp=0x0) at iofclose.c:48
  #1  0x0000557fc7b74f92 in perf_data__close (data=data@entry=0x7ffcdafa6578) at util/data.c:376
  #2  0x0000557fc7a6b807 in cmd_inject (argc=<optimized out>, argv=<optimized out>) at builtin-inject.c:1085
  #3  0x0000557fc7ac4783 in run_builtin (p=0x557fc8074878 <commands+600>, argc=4, argv=0x7ffcdafb6a60) at perf.c:313
  #4  0x0000557fc7a25d5c in handle_internal_command (argv=<optimized out>, argc=<optimized out>) at perf.c:365
  #5  run_argv (argcp=<optimized out>, argv=<optimized out>) at perf.c:409
  #6  main (argc=4, argv=0x7ffcdafb6a60) at perf.c:539
  (gdb)

Fixes: 02e6246 ("perf inject: Close inject.output on exit")
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Riccardo Mancini <rickyman7@gmail.com>
Cc: stable@vger.kernel.org
Link: http://lore.kernel.org/lkml/20211213084829.114772-2-adrian.hunter@intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
mauriciovasquezbernal pushed a commit that referenced this pull request Jan 6, 2022
The fixed commit attempts to get the output file descriptor even if the
file was never opened e.g.

  $ perf record uname
  Linux
  [ perf record: Woken up 1 times to write data ]
  [ perf record: Captured and wrote 0.002 MB perf.data (7 samples) ]
  $ perf inject -i perf.data --vm-time-correlation=dry-run
  Segmentation fault (core dumped)
  $ gdb --quiet perf
  Reading symbols from perf...
  (gdb) r inject -i perf.data --vm-time-correlation=dry-run
  Starting program: /home/ahunter/bin/perf inject -i perf.data --vm-time-correlation=dry-run
  [Thread debugging using libthread_db enabled]
  Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

  Program received signal SIGSEGV, Segmentation fault.
  __GI___fileno (fp=0x0) at fileno.c:35
  35      fileno.c: No such file or directory.
  (gdb) bt
  #0  __GI___fileno (fp=0x0) at fileno.c:35
  #1  0x00005621e48dd987 in perf_data__fd (data=0x7fff4c68bd08) at util/data.h:72
  #2  perf_data__fd (data=0x7fff4c68bd08) at util/data.h:69
  #3  cmd_inject (argc=<optimized out>, argv=0x7fff4c69c1f0) at builtin-inject.c:1017
  #4  0x00005621e4936783 in run_builtin (p=0x5621e4ee6878 <commands+600>, argc=4, argv=0x7fff4c69c1f0) at perf.c:313
  #5  0x00005621e4897d5c in handle_internal_command (argv=<optimized out>, argc=<optimized out>) at perf.c:365
  #6  run_argv (argcp=<optimized out>, argv=<optimized out>) at perf.c:409
  #7  main (argc=4, argv=0x7fff4c69c1f0) at perf.c:539
  (gdb)

Fixes: 0ae0389 ("perf tools: Pass a fd to perf_file_header__read_pipe()")
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Riccardo Mancini <rickyman7@gmail.com>
Cc: stable@vger.kernel.org
Link: http://lore.kernel.org/lkml/20211213084829.114772-3-adrian.hunter@intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
mauriciovasquezbernal pushed a commit that referenced this pull request Jan 6, 2022
Ido Schimmel says:

====================
mlxsw: devlink health reporter extensions

This patchset extends the devlink health reporter registered by mlxsw to
report new health events and their related parameters. These are meant
to aid in debugging hardware and firmware issues.

Patches #1-#2 are preparations.

Patch #3 adds the definitions of the new events and parameters.

Patch #4 extends the health reporter to report the new events and
parameters.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
mauriciovasquezbernal pushed a commit that referenced this pull request Jan 6, 2022
Amit Cohen says:

====================
Add tests for VxLAN with IPv6 underlay

mlxsw driver lately added support for VxLAN with IPv6 underlay.
This set adds the relevant tests for IPv6, most of them are same to
IPv4 tests with the required changes.

Patch set overview:
Patch #1 relaxes requirements for offloading TC filters that
match on 802.1q fields. The following selftests make use of these
newly-relaxed filters.
Patch #2 adds preparation as part of selftests API, which will be used
later.
Patches #3-#4 add tests for VxLAN with bridge aware and unaware.
Patche #5 cleans unused function.
Patches #6-#7 add tests for VxLAN symmetric and asymmetric.
Patch #8 adds test for Q-in-VNI.
====================

Link: https://lore.kernel.org/r/20211221144949.2527545-1-amcohen@nvidia.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
mauriciovasquezbernal pushed a commit that referenced this pull request Jan 6, 2022
Amit Cohen says:

====================
mlxsw: Add tests for VxLAN with IPv6 underlay

mlxsw driver lately added support for VxLAN with IPv6 underlay.
This set adds tests for IPv6, which are dedicated for mlxsw.

Patch set overview:
Patches #1-#2 make vxlan.sh test more flexible and extend it for IPv6
Patches #3-#4 make vxlan_fdb_veto.sh test more flexible and extend it
for IPv6
Patches #5-#6 add tests for VxLAN flooding for different ASICs
Patches #7-#8 add test for VxLAN related traps and align the existing
test
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
mauriciovasquezbernal pushed a commit that referenced this pull request Jan 11, 2022
…inux/kernel/git/saeed/linux

Saeed Mahameed says:

====================
mlx5-updates-2022-01-06

1) Expose FEC per lane block counters via ethtool

2) Trivial fixes/updates/cleanup to mlx5e netdev driver

3) Fix htmldoc build warning

4) Spread mlx5 SFs (sub-functions) to all available CPU cores: Commits 1..5

Shay Drory Says:
================
Before this patchset, mlx5 subfunction shared the same IRQs (MSI-X) with
their peers subfunctions, causing them to use same CPU cores.

In large scale, this is very undesirable, SFs use small number of cpu
cores and all of them will be packed on the same CPU cores, not
utilizing all CPU cores in the system.

In this patchset we want to achieve two things.
 a) Spread IRQs used by SFs to all cpu cores
 b) Pack less SFs in the same IRQ, will result in multiple IRQs per core.

In this patchset, we spread SFs over all online cpus available to mlx5
irqs in Round-Robin manner. e.g.: Whenever a SF is created, pick the next
CPU core with least number of SF IRQs bound to it, SFs will share IRQs on
the same core until a certain limit, when such limit is reached, we
request a new IRQ and add it to that CPU core IRQ pool, when out of IRQs,
pick any IRQ with least number of SF users.

This enhancement is done in order to achieve a better distribution of
the SFs over all the available CPUs, which reduces application latency,
as shown bellow.

Machine details:
Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz with 56 cores.
PCI Express 3 with BW of 126 Gb/s.
ConnectX-5 Ex; EDR IB (100Gb/s) and 100GbE; dual-port QSFP28; PCIe4.0
x16.

Base line test description:
Single SF on the system. One instance of netperf is running on-top the
SF.
Numbers: latency = 15.136 usec, CPU Util = 35%

Test description:
There are 250 SFs on the system. There are 3 instances of netperf
running, on-top three different SFs, in parallel.

Perf numbers:
 # netperf     SFs         latency(usec)     latency    CPU utilization
   affinity    affinity    (lower is better) increase %
 1 cpu=0       cpu={0}     ~23 (app 1-3)     35%        75%
 2 cpu=0,2,4   cpu={0}     app 1: 21.625     30%        68% (CPU 0)
                           app 2-3: 16.5     9%         15% (CPU 2,4)
 3 cpu=0       cpu={0,2,4} app 1: ~16        7%         84% (CPU 0)
                           app 2-3: ~17.9    14%        22% (CPU 2,4)
 4 cpu=0,2,4   cpu={0,2,4} 15.2 (app 1-3)    0%         33% (CPU 0,2,4)

 - The first two entries (#1 and #2) show current state. e.g.: SFs are
   using the same CPU. The last two entries (#3 and #4) shows the latency
   reduction improvement of this patch. e.g.: SFs are on different CPUs.
 - Whenever we use several CPUs, in case there is a different CPU
   utilization, write the utilization of each CPU separately.
 - Whenever the latency result of the netperf instances were different,
   write the latency of each netperf instances separately.

Commands:
 - for netperf CPU=0:
$ for i in {1..3}; do taskset -c 0 netperf -H 1${i}.1.1.1 -t TCP_RR  -- \
  -o RT_LATENCY -r8 & done

 - for netperf CPU=0,2,4
$ for i in {1..3}; do taskset -c $(( ($i - 1) * 2  )) netperf -H \
  1${i}.1.1.1 -t TCP_RR  -- -o RT_LATENCY -r8 & done

================

====================

Signed-off-by: David S. Miller <davem@davemloft.net>
mauriciovasquezbernal pushed a commit that referenced this pull request Feb 14, 2022
Ido Schimmel says:

====================
mlxsw: Add RJ45 ports support

We are in the process of qualifying a new system that has RJ45 ports as
opposed to the transceiver modules (e.g., SFP, QSFP) present on all
existing systems.

This patchset adds support for these ports in mlxsw by adding a couple of
missing BaseT link modes and rejecting ethtool operations that are
specific to transceiver modules.

Patchset overview:

Patches #1-#3 are cleanups and preparations.

Patch #4 adds support for two new link modes.

Patches #5-#6 query and cache the port module's type (e.g., QSFP, RJ45)
during initialization.

Patches #7-#9 forbid ethtool operations that are invalid on RJ45 ports.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
mauriciovasquezbernal pushed a commit that referenced this pull request Feb 14, 2022
Ido Schimmel says:

====================
mlxsw: Add SIP and DIP mangling support

Danielle says:

On Spectrum-2 onwards, it is possible to overwrite SIP and DIP address
of an IPv4 or IPv6 packet in the ACL engine. That corresponds to pedit
munges of, respectively, ip src and ip dst fields, and likewise for ip6.
Offload these munges on the systems where they are supported.

Patchset overview:
Patch #1: introduces SIP_DIP_ACTION and its fields.
Patch #2-#3: adds the new pedit fields, and dispatches on them on
	     Spectrum-2 and above.
Patch #4 adds a selftest.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
alban pushed a commit that referenced this pull request Nov 8, 2022
The SRv6 layer allows defining HMAC data that can later be used to sign IPv6
Segment Routing Headers. This configuration is realised via netlink through
four attributes: SEG6_ATTR_HMACKEYID, SEG6_ATTR_SECRET, SEG6_ATTR_SECRETLEN and
SEG6_ATTR_ALGID. Because the SECRETLEN attribute is decoupled from the actual
length of the SECRET attribute, it is possible to provide invalid combinations
(e.g., secret = "", secretlen = 64). This case is not checked in the code and
with an appropriately crafted netlink message, an out-of-bounds read of up
to 64 bytes (max secret length) can occur past the skb end pointer and into
skb_shared_info:

Breakpoint 1, seg6_genl_sethmac (skb=<optimized out>, info=<optimized out>) at net/ipv6/seg6.c:208
208		memcpy(hinfo->secret, secret, slen);
(gdb) bt
 #0  seg6_genl_sethmac (skb=<optimized out>, info=<optimized out>) at net/ipv6/seg6.c:208
 #1  0xffffffff81e012e9 in genl_family_rcv_msg_doit (skb=skb@entry=0xffff88800b1f9f00, nlh=nlh@entry=0xffff88800b1b7600,
    extack=extack@entry=0xffffc90000ba7af0, ops=ops@entry=0xffffc90000ba7a80, hdrlen=4, net=0xffffffff84237580 <init_net>, family=<optimized out>,
    family=<optimized out>) at net/netlink/genetlink.c:731
 #2  0xffffffff81e01435 in genl_family_rcv_msg (extack=0xffffc90000ba7af0, nlh=0xffff88800b1b7600, skb=0xffff88800b1f9f00,
    family=0xffffffff82fef6c0 <seg6_genl_family>) at net/netlink/genetlink.c:775
 #3  genl_rcv_msg (skb=0xffff88800b1f9f00, nlh=0xffff88800b1b7600, extack=0xffffc90000ba7af0) at net/netlink/genetlink.c:792
 #4  0xffffffff81dfffc3 in netlink_rcv_skb (skb=skb@entry=0xffff88800b1f9f00, cb=cb@entry=0xffffffff81e01350 <genl_rcv_msg>)
    at net/netlink/af_netlink.c:2501
 #5  0xffffffff81e00919 in genl_rcv (skb=0xffff88800b1f9f00) at net/netlink/genetlink.c:803
 #6  0xffffffff81dff6ae in netlink_unicast_kernel (ssk=0xffff888010eec800, skb=0xffff88800b1f9f00, sk=0xffff888004aed000)
    at net/netlink/af_netlink.c:1319
 #7  netlink_unicast (ssk=ssk@entry=0xffff888010eec800, skb=skb@entry=0xffff88800b1f9f00, portid=portid@entry=0, nonblock=<optimized out>)
    at net/netlink/af_netlink.c:1345
 #8  0xffffffff81dff9a4 in netlink_sendmsg (sock=<optimized out>, msg=0xffffc90000ba7e48, len=<optimized out>) at net/netlink/af_netlink.c:1921
...
(gdb) p/x ((struct sk_buff *)0xffff88800b1f9f00)->head + ((struct sk_buff *)0xffff88800b1f9f00)->end
$1 = 0xffff88800b1b76c0
(gdb) p/x secret
$2 = 0xffff88800b1b76c0
(gdb) p slen
$3 = 64 '@'

The OOB data can then be read back from userspace by dumping HMAC state. This
commit fixes this by ensuring SECRETLEN cannot exceed the actual length of
SECRET.

Reported-by: Lucas Leong <wmliang.tw@gmail.com>
Tested: verified that EINVAL is correctly returned when secretlen > len(secret)
Fixes: 4f4853d ("ipv6: sr: implement API to control SR HMAC structure")
Signed-off-by: David Lebrun <dlebrun@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
alban pushed a commit that referenced this pull request Nov 8, 2022
Fix a NULL dereference of the struct bonding.rr_tx_counter member because
if a bond is initially created with an initial mode != zero (Round Robin)
the memory required for the counter is never created and when the mode is
changed there is never any attempt to verify the memory is allocated upon
switching modes.

This causes the following Oops on an aarch64 machine:
    [  334.686773] Unable to handle kernel paging request at virtual address ffff2c91ac905000
    [  334.694703] Mem abort info:
    [  334.697486]   ESR = 0x0000000096000004
    [  334.701234]   EC = 0x25: DABT (current EL), IL = 32 bits
    [  334.706536]   SET = 0, FnV = 0
    [  334.709579]   EA = 0, S1PTW = 0
    [  334.712719]   FSC = 0x04: level 0 translation fault
    [  334.717586] Data abort info:
    [  334.720454]   ISV = 0, ISS = 0x00000004
    [  334.724288]   CM = 0, WnR = 0
    [  334.727244] swapper pgtable: 4k pages, 48-bit VAs, pgdp=000008044d662000
    [  334.733944] [ffff2c91ac905000] pgd=0000000000000000, p4d=0000000000000000
    [  334.740734] Internal error: Oops: 96000004 [#1] SMP
    [  334.745602] Modules linked in: bonding tls veth rfkill sunrpc arm_spe_pmu vfat fat acpi_ipmi ipmi_ssif ixgbe igb i40e mdio ipmi_devintf ipmi_msghandler arm_cmn arm_dsu_pmu cppc_cpufreq acpi_tad fuse zram crct10dif_ce ast ghash_ce sbsa_gwdt nvme drm_vram_helper drm_ttm_helper nvme_core ttm xgene_hwmon
    [  334.772217] CPU: 7 PID: 2214 Comm: ping Not tainted 6.0.0-rc4-00133-g64ae13ed4784 #4
    [  334.779950] Hardware name: GIGABYTE R272-P31-00/MP32-AR1-00, BIOS F18v (SCP: 1.08.20211002) 12/01/2021
    [  334.789244] pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
    [  334.796196] pc : bond_rr_gen_slave_id+0x40/0x124 [bonding]
    [  334.801691] lr : bond_xmit_roundrobin_slave_get+0x38/0xdc [bonding]
    [  334.807962] sp : ffff8000221733e0
    [  334.811265] x29: ffff8000221733e0 x28: ffffdbac8572d198 x27: ffff80002217357c
    [  334.818392] x26: 000000000000002a x25: ffffdbacb33ee000 x24: ffff07ff980fa000
    [  334.825519] x23: ffffdbacb2e398ba x22: ffff07ff98102000 x21: ffff07ff981029c0
    [  334.832646] x20: 0000000000000001 x19: ffff07ff981029c0 x18: 0000000000000014
    [  334.839773] x17: 0000000000000000 x16: ffffdbacb1004364 x15: 0000aaaabe2f5a62
    [  334.846899] x14: ffff07ff8e55d968 x13: ffff07ff8e55db30 x12: 0000000000000000
    [  334.854026] x11: ffffdbacb21532e8 x10: 0000000000000001 x9 : ffffdbac857178ec
    [  334.861153] x8 : ffff07ff9f6e5a28 x7 : 0000000000000000 x6 : 000000007c2b3742
    [  334.868279] x5 : ffff2c91ac905000 x4 : ffff2c91ac905000 x3 : ffff07ff9f554400
    [  334.875406] x2 : ffff2c91ac905000 x1 : 0000000000000001 x0 : ffff07ff981029c0
    [  334.882532] Call trace:
    [  334.884967]  bond_rr_gen_slave_id+0x40/0x124 [bonding]
    [  334.890109]  bond_xmit_roundrobin_slave_get+0x38/0xdc [bonding]
    [  334.896033]  __bond_start_xmit+0x128/0x3a0 [bonding]
    [  334.901001]  bond_start_xmit+0x54/0xb0 [bonding]
    [  334.905622]  dev_hard_start_xmit+0xb4/0x220
    [  334.909798]  __dev_queue_xmit+0x1a0/0x720
    [  334.913799]  arp_xmit+0x3c/0xbc
    [  334.916932]  arp_send_dst+0x98/0xd0
    [  334.920410]  arp_solicit+0xe8/0x230
    [  334.923888]  neigh_probe+0x60/0xb0
    [  334.927279]  __neigh_event_send+0x3b0/0x470
    [  334.931453]  neigh_resolve_output+0x70/0x90
    [  334.935626]  ip_finish_output2+0x158/0x514
    [  334.939714]  __ip_finish_output+0xac/0x1a4
    [  334.943800]  ip_finish_output+0x40/0xfc
    [  334.947626]  ip_output+0xf8/0x1a4
    [  334.950931]  ip_send_skb+0x5c/0x100
    [  334.954410]  ip_push_pending_frames+0x3c/0x60
    [  334.958758]  raw_sendmsg+0x458/0x6d0
    [  334.962325]  inet_sendmsg+0x50/0x80
    [  334.965805]  sock_sendmsg+0x60/0x6c
    [  334.969286]  __sys_sendto+0xc8/0x134
    [  334.972853]  __arm64_sys_sendto+0x34/0x4c
    [  334.976854]  invoke_syscall+0x78/0x100
    [  334.980594]  el0_svc_common.constprop.0+0x4c/0xf4
    [  334.985287]  do_el0_svc+0x38/0x4c
    [  334.988591]  el0_svc+0x34/0x10c
    [  334.991724]  el0t_64_sync_handler+0x11c/0x150
    [  334.996072]  el0t_64_sync+0x190/0x194
    [  334.999726] Code: b9001062 f9403c02 d53cd044 8b040042 (b8210040)
    [  335.005810] ---[ end trace 0000000000000000 ]---
    [  335.010416] Kernel panic - not syncing: Oops: Fatal exception in interrupt
    [  335.017279] SMP: stopping secondary CPUs
    [  335.021374] Kernel Offset: 0x5baca8eb0000 from 0xffff800008000000
    [  335.027456] PHYS_OFFSET: 0x80000000
    [  335.030932] CPU features: 0x0000,0085c029,19805c82
    [  335.035713] Memory Limit: none
    [  335.038756] Rebooting in 180 seconds..

The fix is to allocate the memory in bond_open() which is guaranteed
to be called before any packets are processed.

Fixes: 848ca91 ("net: bonding: Use per-cpu rr_tx_counter")
CC: Jussi Maki <joamaki@gmail.com>
Signed-off-by: Jonathan Toppins <jtoppins@redhat.com>
Acked-by: Jay Vosburgh <jay.vosburgh@canonical.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
alban pushed a commit that referenced this pull request Nov 8, 2022
When walking through an inode extents, the ext4_ext_binsearch_idx() function
assumes that the extent header has been previously validated.  However, there
are no checks that verify that the number of entries (eh->eh_entries) is
non-zero when depth is > 0.  And this will lead to problems because the
EXT_FIRST_INDEX() and EXT_LAST_INDEX() will return garbage and result in this:

[  135.245946] ------------[ cut here ]------------
[  135.247579] kernel BUG at fs/ext4/extents.c:2258!
[  135.249045] invalid opcode: 0000 [#1] PREEMPT SMP
[  135.250320] CPU: 2 PID: 238 Comm: tmp118 Not tainted 5.19.0-rc8+ #4
[  135.252067] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b-rebuilt.opensuse.org 04/01/2014
[  135.255065] RIP: 0010:ext4_ext_map_blocks+0xc20/0xcb0
[  135.256475] Code:
[  135.261433] RSP: 0018:ffffc900005939f8 EFLAGS: 00010246
[  135.262847] RAX: 0000000000000024 RBX: ffffc90000593b70 RCX: 0000000000000023
[  135.264765] RDX: ffff8880038e5f10 RSI: 0000000000000003 RDI: ffff8880046e922c
[  135.266670] RBP: ffff8880046e9348 R08: 0000000000000001 R09: ffff888002ca580c
[  135.268576] R10: 0000000000002602 R11: 0000000000000000 R12: 0000000000000024
[  135.270477] R13: 0000000000000000 R14: 0000000000000024 R15: 0000000000000000
[  135.272394] FS:  00007fdabdc56740(0000) GS:ffff88807dd00000(0000) knlGS:0000000000000000
[  135.274510] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  135.276075] CR2: 00007ffc26bd4f00 CR3: 0000000006261004 CR4: 0000000000170ea0
[  135.277952] Call Trace:
[  135.278635]  <TASK>
[  135.279247]  ? preempt_count_add+0x6d/0xa0
[  135.280358]  ? percpu_counter_add_batch+0x55/0xb0
[  135.281612]  ? _raw_read_unlock+0x18/0x30
[  135.282704]  ext4_map_blocks+0x294/0x5a0
[  135.283745]  ? xa_load+0x6f/0xa0
[  135.284562]  ext4_mpage_readpages+0x3d6/0x770
[  135.285646]  read_pages+0x67/0x1d0
[  135.286492]  ? folio_add_lru+0x51/0x80
[  135.287441]  page_cache_ra_unbounded+0x124/0x170
[  135.288510]  filemap_get_pages+0x23d/0x5a0
[  135.289457]  ? path_openat+0xa72/0xdd0
[  135.290332]  filemap_read+0xbf/0x300
[  135.291158]  ? _raw_spin_lock_irqsave+0x17/0x40
[  135.292192]  new_sync_read+0x103/0x170
[  135.293014]  vfs_read+0x15d/0x180
[  135.293745]  ksys_read+0xa1/0xe0
[  135.294461]  do_syscall_64+0x3c/0x80
[  135.295284]  entry_SYSCALL_64_after_hwframe+0x46/0xb0

This patch simply adds an extra check in __ext4_ext_check(), verifying that
eh_entries is not 0 when eh_depth is > 0.

Link: https://bugzilla.kernel.org/show_bug.cgi?id=215941
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216283
Cc: Baokun Li <libaokun1@huawei.com>
Cc: stable@kernel.org
Signed-off-by: Luís Henriques <lhenriques@suse.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Baokun Li <libaokun1@huawei.com>
Link: https://lore.kernel.org/r/20220822094235.2690-1-lhenriques@suse.de
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.