-
Notifications
You must be signed in to change notification settings - Fork 0
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
seccomp: Support atomic "addfd + send" #6
Conversation
6b32d35
to
93b3c72
Compare
93b3c72
to
fd09f44
Compare
addfd.newfd = 0; | ||
addfd.flags = SECCOMP_ADDFD_FLAG_SEND; | ||
fd = ioctl(listener, SECCOMP_IOCTL_NOTIF_ADDFD, &addfd); | ||
EXPECT_EQ(filecmp(getpid(), pid, memfd, fd), 0); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It would be good to test that the fd was installed at the correct place in the fdtable (addfd.newfd = 0;
):
+ EXPECT_EQ(fd, 0);
EXPECT_EQ(filecmp(getpid(), pid, memfd, fd), 0);
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
That won't work, this won't be fd 0. To specify a remote fd number to use, you need to set SECCOMP_ADDFD_FLAG_SETFD
. This is another flag and that setting this flag only does what we want is tested a few lines above this: https://github.com/kinvolk/linux/pull/6/files#diff-8933b3a4375dff05fe0d6851a10c22a2f291f9edaa8592c229d73f861eaf73b8L4035-L4040
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
oh, I see... then, could you add a similar test on the correct value of fd? I see this piece of code a bit earlier in this file:
/*
* The child has fds 0(stdin), 1(stdout), 2(stderr), 3(memfd),
* 4(listener), so the newly allocated fd should be 5.
*/
EXPECT_EQ(fd, 5);
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Oh, sure, added that!
if (syscall(__NR_getppid) != USER_NOTIF_MAGIC) | ||
exit(1); | ||
|
||
/* Atomic addfd+send is received here. Check it is a valid fd */ | ||
if (fcntl(syscall(__NR_getppid), F_GETFD) == -1) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
You could add a check that syscall(__NR_getppid), F_GETFD)
returns the fd number requested in the other side. In this case, 0
(line 4074 addfd.newfd = 0;
). I suggest to try 43, so that we test that the fd is correctly returned by the syscall.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Not 0 in this case, that is ignored. Also as said in the other comment the setting fd func is tested. I can also add a test combining them, but I won't like to mix the tests of different flags.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think it's good to have a test that combine the too.
/* If we fail to allocate an fd mark this as err */ | ||
if (n.val < 0) { | ||
n.error = n.val; | ||
n.val = 0; |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Why 0?
Can we add a unit test to check that the return value and the errno of the syscall is correct in this case?
I assume it should return:
- return value: -1
- errno: EMFILE ("The per-process limit on the number of open file descriptors has been reached")
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yeah, if you set error to -errno, the call to syscall_set_return_value()
at the end of this function will handle that (return -1 and set errno to the target). Here is the function doc: https://github.com/torvalds/linux/blob/19c329f6808995b142b3966301f217c831e7cf31/include/asm-generic/syscall.h#L85-L100
If you grep the kernel tree for usage of syscall_set_return_value()
you will find that it is always used like this (error set to -errno and value is 0). I did the same for consistency, and tested and this works fine.
However, I noticed that if I don't set these values here, the proper thing is returned to the target if I add more fds that we can: -1 and errno set to too many files. I didn't fully understand if that was happening by chance or it was on purpose (as in that case we call syscall_set_return_value()
with err=0
and val=-errno
). To be safe I used the same convention it is used in the rest of the kernel code, as also the documentation of syscall_set_return_value()
t say what we do here should work but not other things. But planned to ask in the cover letter.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Regarding the test, I wanted to ask if this looks good and I can add more tests in follow-up patches. What do you think? I wanted to avoid spending more time on tests now, before knowing the overall impression of the patch
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Fine for me to have this first iteration. You could list in the cover letter the list of missing tests, and mark this patch set as RFC.
I think the cover letter should mention that the caveat that this patch set does not solve addfd + send for syscalls that install new fds but don't return the fd number in the return value, such as:
|
fd09f44
to
8c119ba
Compare
Alban Crequy reported a race condition userspace faces when we want to add some fds and make the syscall return them[1] using seccomp notify. The problem is that currently two different ioctl() calls are needed by the process handling the syscalls (agent) for another userspace process (target): SECCOMP_IOCTL_NOTIF_ADDFD to allocate the fd and SECCOMP_IOCTL_NOTIF_SEND to return that value. Therefore, it is possible for the agent to do the first ioctl to add a file descriptor but the target is interrupted (EINTR) before the agent does the second ioctl() call. This patch handles the case when we want to make the syscall return the allocated fd (like connect(2)) by just allowing a flag to "allocate an fd and return that value" in an atomic fashion. For that reason, other syscalls like socketpair(), pipe() or recvmsg with SCM_RIGHTs will still suffer from the described problem, as their return value is not an fd. This patch adds a flag to the ADDFD ioctl() so it adds the fd and returns that value atomically to the target program, as suggested by Kees Cook[2]. This is done by simply allowing seccomp_do_user_notification() to add the fd and return it in this case. Therefore, in this case the target wakes up from the wait in seccomp_do_user_notification() either to interrupt the syscall or to add the fd and return it. The struct seccomp_notif_resp, used when doing SECCOMP_IOCTL_NOTIF_SEND ioctl() to send a response to the target, has three more fields that we don't allow to set when doing the addfd ioctl() to also return. The reasons to disallow each field are: * val: This will be set to the new allocated fd. * error: If this is non-zero, the value is ignored. Therefore, it is pointless in this case as we want to return the value. * flags: The only flag is to let userspace continue to execute the syscall. This seems pointless, as we want the syscall to return the allocated fd. [1]: https://lists.linuxfoundation.org/pipermail/containers/2020-November/042718.html [2]: https://lists.linuxfoundation.org/pipermail/containers/2020-December/042797.html Signed-off-by: Rodrigo Campos <rodrigo@kinvolk.io>
This just adds a test to verify that when using the new introduced flag to ADDFD, a valid fd is added and returned as the syscall result. Signed-off-by: Rodrigo Campos <rodrigo@kinvolk.io>
8c119ba
to
8719f41
Compare
The struct seccomp_kaddfd* is a pointer to a struct allocated in the stack by seccomp_notify_addfd(). If we don't copy the added fd before sending the completion signal in seccomp_handle_addfd(), there is a race between us reading it and seccomp_notify_addfd() finishing and invalidating the stack. In particular, the race is as follows: Agent | target | seccomp_do_user_notification() | seccomp_notify_addfd() wait_for_completion_interruptible(&n.ready); | | complete(&knotif->ready); | mutex_unlock(&filter->notify_lock); | ret = wait_for_completion_interruptible(&kaddfd.completion); | mutex_lock(&match->notify_lock); | ... | # addfd && n.state == SECCOMP_NOTIFY_REPLIED | seccomp_handle_addfd(addfd) | list_del_init(&addfd->list); | addfd->ret = reeive_fd_replace(..) | complete(&addfd->completion); | | | # ret = 0 | ret = kaddfd.ret; | goto out; | ... | | # Function finishes here, so the stack is lost | return ret | # addfd was already freed, as it is on | # the stack of seccomp_notify_addfd() | # This is a dirty read! | n.val = addfd->ret; | ... | This patches fixes that race by just copying the value in seccomp_handle_addfd() before sending the complete. Thanks to Mauricio <mauricio@kinvolk.io> for doing stress tests and finding something fishy.
374189d
to
b1f67b9
Compare
Ido Schimmel says: ==================== mlxsw: Support multiple RIF MAC prefixes Currently, mlxsw enforces that all the netdevs used as router interfaces (RIFs) have the same MAC prefix (e.g., same 38 MSBs in Spectrum-1). Otherwise, an error is returned to user space with extack. This patchset relaxes the limitation through the use of RIF MAC profiles. A RIF MAC profile is a hardware entity that represents a particular MAC prefix which multiple RIFs can reference. Therefore, the number of possible MAC prefixes is no longer one, but the number of profiles supported by the device. The ability to change the MAC of a particular netdev is useful, for example, for users who use the netdev to connect to an upstream provider that performs MAC filtering. Currently, such users are either forced to negotiate with the provider or change the MAC address of all other netdevs so that they share the same prefix. Patchset overview: Patches #1-#3 are preparations. Patch #4 adds actual support for RIF MAC profiles. Patch #5 exposes RIF MAC profiles as a devlink resource, so that user space has visibility into the maximum number of profiles and current occupancy. Useful for debugging and testing (next 3 patches). Patches #6-#8 add both scale and functional tests. Patch #9 removes tests that validated the previous limitation. It is now covered by patch #6 for devices that support a single profile. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
Attempting to defragment a Btrfs file containing a transparent huge page immediately deadlocks with the following stack trace: #0 context_switch (kernel/sched/core.c:4940:2) #1 __schedule (kernel/sched/core.c:6287:8) #2 schedule (kernel/sched/core.c:6366:3) #3 io_schedule (kernel/sched/core.c:8389:2) #4 wait_on_page_bit_common (mm/filemap.c:1356:4) #5 __lock_page (mm/filemap.c:1648:2) #6 lock_page (./include/linux/pagemap.h:625:3) #7 pagecache_get_page (mm/filemap.c:1910:4) #8 find_or_create_page (./include/linux/pagemap.h:420:9) #9 defrag_prepare_one_page (fs/btrfs/ioctl.c:1068:9) #10 defrag_one_range (fs/btrfs/ioctl.c:1326:14) #11 defrag_one_cluster (fs/btrfs/ioctl.c:1421:9) #12 btrfs_defrag_file (fs/btrfs/ioctl.c:1523:9) #13 btrfs_ioctl_defrag (fs/btrfs/ioctl.c:3117:9) #14 btrfs_ioctl (fs/btrfs/ioctl.c:4872:10) #15 vfs_ioctl (fs/ioctl.c:51:10) #16 __do_sys_ioctl (fs/ioctl.c:874:11) #17 __se_sys_ioctl (fs/ioctl.c:860:1) torvalds#18 __x64_sys_ioctl (fs/ioctl.c:860:1) torvalds#19 do_syscall_x64 (arch/x86/entry/common.c:50:14) torvalds#20 do_syscall_64 (arch/x86/entry/common.c:80:7) torvalds#21 entry_SYSCALL_64+0x7c/0x15b (arch/x86/entry/entry_64.S:113) A huge page is represented by a compound page, which consists of a struct page for each PAGE_SIZE page within the huge page. The first struct page is the "head page", and the remaining are "tail pages". Defragmentation attempts to lock each page in the range. However, lock_page() on a tail page actually locks the corresponding head page. So, if defragmentation tries to lock more than one struct page in a compound page, it tries to lock the same head page twice and deadlocks with itself. Ideally, we should be able to defragment transparent huge pages. However, THP for filesystems is currently read-only, so a lot of code is not ready to use huge pages for I/O. For now, let's just return ETXTBUSY. This can be reproduced with the following on a kernel with CONFIG_READ_ONLY_THP_FOR_FS=y: $ cat create_thp_file.c #include <fcntl.h> #include <stdbool.h> #include <stdio.h> #include <stdint.h> #include <stdlib.h> #include <unistd.h> #include <sys/mman.h> static const char zeroes[1024 * 1024]; static const size_t FILE_SIZE = 2 * 1024 * 1024; int main(int argc, char **argv) { if (argc != 2) { fprintf(stderr, "usage: %s PATH\n", argv[0]); return EXIT_FAILURE; } int fd = creat(argv[1], 0777); if (fd == -1) { perror("creat"); return EXIT_FAILURE; } size_t written = 0; while (written < FILE_SIZE) { ssize_t ret = write(fd, zeroes, sizeof(zeroes) < FILE_SIZE - written ? sizeof(zeroes) : FILE_SIZE - written); if (ret < 0) { perror("write"); return EXIT_FAILURE; } written += ret; } close(fd); fd = open(argv[1], O_RDONLY); if (fd == -1) { perror("open"); return EXIT_FAILURE; } /* * Reserve some address space so that we can align the file mapping to * the huge page size. */ void *placeholder_map = mmap(NULL, FILE_SIZE * 2, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (placeholder_map == MAP_FAILED) { perror("mmap (placeholder)"); return EXIT_FAILURE; } void *aligned_address = (void *)(((uintptr_t)placeholder_map + FILE_SIZE - 1) & ~(FILE_SIZE - 1)); void *map = mmap(aligned_address, FILE_SIZE, PROT_READ | PROT_EXEC, MAP_SHARED | MAP_FIXED, fd, 0); if (map == MAP_FAILED) { perror("mmap"); return EXIT_FAILURE; } if (madvise(map, FILE_SIZE, MADV_HUGEPAGE) < 0) { perror("madvise"); return EXIT_FAILURE; } char *line = NULL; size_t line_capacity = 0; FILE *smaps_file = fopen("/proc/self/smaps", "r"); if (!smaps_file) { perror("fopen"); return EXIT_FAILURE; } for (;;) { for (size_t off = 0; off < FILE_SIZE; off += 4096) ((volatile char *)map)[off]; ssize_t ret; bool this_mapping = false; while ((ret = getline(&line, &line_capacity, smaps_file)) > 0) { unsigned long start, end, huge; if (sscanf(line, "%lx-%lx", &start, &end) == 2) { this_mapping = (start <= (uintptr_t)map && (uintptr_t)map < end); } else if (this_mapping && sscanf(line, "FilePmdMapped: %ld", &huge) == 1 && huge > 0) { return EXIT_SUCCESS; } } sleep(6); rewind(smaps_file); fflush(smaps_file); } } $ ./create_thp_file huge $ btrfs fi defrag -czstd ./huge Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
After commit 9298e63 ("bpf/tests: Add exhaustive tests of ALU operand magnitudes"), when modprobe test_bpf.ko with JIT on mips64, there exists segment fault due to the following reason: [...] ALU64_MOV_X: all register value magnitudes jited:1 Break instruction in kernel code[#1] [...] It seems that the related JIT implementations of some test cases in test_bpf() have problems. At this moment, I do not care about the segment fault while I just want to verify the test cases of tail calls. Based on the above background and motivation, add the following module parameter test_suite to the test_bpf.ko: test_suite=<string>: only the specified test suite will be run, the string can be "test_bpf", "test_tail_calls" or "test_skb_segment". If test_suite is not specified, but test_id, test_name or test_range is specified, set 'test_bpf' as the default test suite. This is useful to only test the corresponding test suite when specifying the valid test_suite string. Any invalid test suite will result in -EINVAL being returned and no tests being run. If the test_suite is not specified or specified as empty string, it does not change the current logic, all of the test cases will be run. Here are some test results: # dmesg -c # modprobe test_bpf # dmesg | grep Summary test_bpf: Summary: 1009 PASSED, 0 FAILED, [0/997 JIT'ed] test_bpf: test_tail_calls: Summary: 8 PASSED, 0 FAILED, [0/8 JIT'ed] test_bpf: test_skb_segment: Summary: 2 PASSED, 0 FAILED # rmmod test_bpf # dmesg -c # modprobe test_bpf test_suite=test_bpf # dmesg | tail -1 test_bpf: Summary: 1009 PASSED, 0 FAILED, [0/997 JIT'ed] # rmmod test_bpf # dmesg -c # modprobe test_bpf test_suite=test_tail_calls # dmesg test_bpf: #0 Tail call leaf jited:0 21 PASS [...] test_bpf: #7 Tail call error path, index out of range jited:0 32 PASS test_bpf: test_tail_calls: Summary: 8 PASSED, 0 FAILED, [0/8 JIT'ed] # rmmod test_bpf # dmesg -c # modprobe test_bpf test_suite=test_skb_segment # dmesg test_bpf: #0 gso_with_rx_frags PASS test_bpf: #1 gso_linear_no_head_frag PASS test_bpf: test_skb_segment: Summary: 2 PASSED, 0 FAILED # rmmod test_bpf # dmesg -c # modprobe test_bpf test_id=1 # dmesg test_bpf: test_bpf: set 'test_bpf' as the default test_suite. test_bpf: #1 TXA jited:0 54 51 50 PASS test_bpf: Summary: 1 PASSED, 0 FAILED, [0/1 JIT'ed] # rmmod test_bpf # dmesg -c # modprobe test_bpf test_suite=test_bpf test_name=TXA # dmesg test_bpf: #1 TXA jited:0 54 50 51 PASS test_bpf: Summary: 1 PASSED, 0 FAILED, [0/1 JIT'ed] # rmmod test_bpf # dmesg -c # modprobe test_bpf test_suite=test_tail_calls test_range=6,7 # dmesg test_bpf: #6 Tail call error path, NULL target jited:0 41 PASS test_bpf: #7 Tail call error path, index out of range jited:0 32 PASS test_bpf: test_tail_calls: Summary: 2 PASSED, 0 FAILED, [0/2 JIT'ed] # rmmod test_bpf # dmesg -c # modprobe test_bpf test_suite=test_skb_segment test_id=1 # dmesg test_bpf: #1 gso_linear_no_head_frag PASS test_bpf: test_skb_segment: Summary: 1 PASSED, 0 FAILED By the way, the above segment fault has been fixed in the latest bpf-next tree which contains the mips64 JIT rework. Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: Johan Almbladh <johan.almbladh@anyfinetworks.com> Acked-by: Johan Almbladh <johan.almbladh@anyfinetworks.com> Link: https://lore.kernel.org/bpf/1635384321-28128-1-git-send-email-yangtiezhu@loongson.cn
Host crashes when pci_enable_atomic_ops_to_root() is called for VFs with virtual buses. The virtual buses added to SR-IOV have bus->self set to NULL and host crashes due to this. PID: 4481 TASK: ffff89c6941b0000 CPU: 53 COMMAND: "bash" ... #3 [ffff9a9481713808] oops_end at ffffffffb9025cd6 #4 [ffff9a9481713828] page_fault_oops at ffffffffb906e417 #5 [ffff9a9481713888] exc_page_fault at ffffffffb9a0ad14 #6 [ffff9a94817138b0] asm_exc_page_fault at ffffffffb9c00ace [exception RIP: pcie_capability_read_dword+28] RIP: ffffffffb952fd5c RSP: ffff9a9481713960 RFLAGS: 00010246 RAX: 0000000000000001 RBX: ffff89c6b1096000 RCX: 0000000000000000 RDX: ffff9a9481713990 RSI: 0000000000000024 RDI: 0000000000000000 RBP: 0000000000000080 R8: 0000000000000008 R9: ffff89c64341a2f8 R10: 0000000000000002 R11: 0000000000000000 R12: ffff89c648bab000 R13: 0000000000000000 R14: 0000000000000000 R15: ffff89c648bab0c8 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #7 [ffff9a9481713988] pci_enable_atomic_ops_to_root at ffffffffb95359a6 #8 [ffff9a94817139c0] bnxt_qplib_determine_atomics at ffffffffc08c1a33 [bnxt_re] #9 [ffff9a94817139d0] bnxt_re_dev_init at ffffffffc08ba2d1 [bnxt_re] Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit in Device Control 2 is reserved for VFs. The PF value applies to all associated VFs. Return -EINVAL if pci_enable_atomic_ops_to_root() is called for a VF. Link: https://lore.kernel.org/r/1631354585-16597-1-git-send-email-selvin.xavier@broadcom.com Fixes: 35f5ace ("RDMA/bnxt_re: Enable global atomic ops if platform supports") Fixes: 430a236 ("PCI: Add pci_enable_atomic_ops_to_root()") Signed-off-by: Selvin Xavier <selvin.xavier@broadcom.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Reviewed-by: Andy Gospodarek <gospo@broadcom.com>
It is generally unsafe to call put_device() with dpm_list_mtx held, because the given device's release routine may carry out an action depending on that lock which then may deadlock, so modify the system-wide suspend and resume of devices to always drop dpm_list_mtx before calling put_device() (and adjust white space somewhat while at it). For instance, this prevents the following splat from showing up in the kernel log after a system resume in certain configurations: [ 3290.969514] ====================================================== [ 3290.969517] WARNING: possible circular locking dependency detected [ 3290.969519] 5.15.0+ #2420 Tainted: G S [ 3290.969523] ------------------------------------------------------ [ 3290.969525] systemd-sleep/4553 is trying to acquire lock: [ 3290.969529] ffff888117ab1138 ((wq_completion)hci0#2){+.+.}-{0:0}, at: flush_workqueue+0x87/0x4a0 [ 3290.969554] but task is already holding lock: [ 3290.969556] ffffffff8280fca8 (dpm_list_mtx){+.+.}-{3:3}, at: dpm_resume+0x12e/0x3e0 [ 3290.969571] which lock already depends on the new lock. [ 3290.969573] the existing dependency chain (in reverse order) is: [ 3290.969575] -> #3 (dpm_list_mtx){+.+.}-{3:3}: [ 3290.969583] __mutex_lock+0x9d/0xa30 [ 3290.969591] device_pm_add+0x2e/0xe0 [ 3290.969597] device_add+0x4d5/0x8f0 [ 3290.969605] hci_conn_add_sysfs+0x43/0xb0 [bluetooth] [ 3290.969689] hci_conn_complete_evt.isra.71+0x124/0x750 [bluetooth] [ 3290.969747] hci_event_packet+0xd6c/0x28a0 [bluetooth] [ 3290.969798] hci_rx_work+0x213/0x640 [bluetooth] [ 3290.969842] process_one_work+0x2aa/0x650 [ 3290.969851] worker_thread+0x39/0x400 [ 3290.969859] kthread+0x142/0x170 [ 3290.969865] ret_from_fork+0x22/0x30 [ 3290.969872] -> #2 (&hdev->lock){+.+.}-{3:3}: [ 3290.969881] __mutex_lock+0x9d/0xa30 [ 3290.969887] hci_event_packet+0xba/0x28a0 [bluetooth] [ 3290.969935] hci_rx_work+0x213/0x640 [bluetooth] [ 3290.969978] process_one_work+0x2aa/0x650 [ 3290.969985] worker_thread+0x39/0x400 [ 3290.969993] kthread+0x142/0x170 [ 3290.969999] ret_from_fork+0x22/0x30 [ 3290.970004] -> #1 ((work_completion)(&hdev->rx_work)){+.+.}-{0:0}: [ 3290.970013] process_one_work+0x27d/0x650 [ 3290.970020] worker_thread+0x39/0x400 [ 3290.970028] kthread+0x142/0x170 [ 3290.970033] ret_from_fork+0x22/0x30 [ 3290.970038] -> #0 ((wq_completion)hci0#2){+.+.}-{0:0}: [ 3290.970047] __lock_acquire+0x15cb/0x1b50 [ 3290.970054] lock_acquire+0x26c/0x300 [ 3290.970059] flush_workqueue+0xae/0x4a0 [ 3290.970066] drain_workqueue+0xa1/0x130 [ 3290.970073] destroy_workqueue+0x34/0x1f0 [ 3290.970081] hci_release_dev+0x49/0x180 [bluetooth] [ 3290.970130] bt_host_release+0x1d/0x30 [bluetooth] [ 3290.970195] device_release+0x33/0x90 [ 3290.970201] kobject_release+0x63/0x160 [ 3290.970211] dpm_resume+0x164/0x3e0 [ 3290.970215] dpm_resume_end+0xd/0x20 [ 3290.970220] suspend_devices_and_enter+0x1a4/0xba0 [ 3290.970229] pm_suspend+0x26b/0x310 [ 3290.970236] state_store+0x42/0x90 [ 3290.970243] kernfs_fop_write_iter+0x135/0x1b0 [ 3290.970251] new_sync_write+0x125/0x1c0 [ 3290.970257] vfs_write+0x360/0x3c0 [ 3290.970263] ksys_write+0xa7/0xe0 [ 3290.970269] do_syscall_64+0x3a/0x80 [ 3290.970276] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 3290.970284] other info that might help us debug this: [ 3290.970285] Chain exists of: (wq_completion)hci0#2 --> &hdev->lock --> dpm_list_mtx [ 3290.970297] Possible unsafe locking scenario: [ 3290.970299] CPU0 CPU1 [ 3290.970300] ---- ---- [ 3290.970302] lock(dpm_list_mtx); [ 3290.970306] lock(&hdev->lock); [ 3290.970310] lock(dpm_list_mtx); [ 3290.970314] lock((wq_completion)hci0#2); [ 3290.970319] *** DEADLOCK *** [ 3290.970321] 7 locks held by systemd-sleep/4553: [ 3290.970325] #0: ffff888103bcd448 (sb_writers#4){.+.+}-{0:0}, at: ksys_write+0xa7/0xe0 [ 3290.970341] #1: ffff888115a14488 (&of->mutex){+.+.}-{3:3}, at: kernfs_fop_write_iter+0x103/0x1b0 [ 3290.970355] #2: ffff888100f719e0 (kn->active#233){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x10c/0x1b0 [ 3290.970369] #3: ffffffff82661048 (autosleep_lock){+.+.}-{3:3}, at: state_store+0x12/0x90 [ 3290.970384] #4: ffffffff82658ac8 (system_transition_mutex){+.+.}-{3:3}, at: pm_suspend+0x9f/0x310 [ 3290.970399] #5: ffffffff827f2a48 (acpi_scan_lock){+.+.}-{3:3}, at: acpi_suspend_begin+0x4c/0x80 [ 3290.970416] #6: ffffffff8280fca8 (dpm_list_mtx){+.+.}-{3:3}, at: dpm_resume+0x12e/0x3e0 [ 3290.970428] stack backtrace: [ 3290.970431] CPU: 3 PID: 4553 Comm: systemd-sleep Tainted: G S 5.15.0+ #2420 [ 3290.970438] Hardware name: Dell Inc. XPS 13 9380/0RYJWW, BIOS 1.5.0 06/03/2019 [ 3290.970441] Call Trace: [ 3290.970446] dump_stack_lvl+0x44/0x57 [ 3290.970454] check_noncircular+0x105/0x120 [ 3290.970468] ? __lock_acquire+0x15cb/0x1b50 [ 3290.970474] __lock_acquire+0x15cb/0x1b50 [ 3290.970487] lock_acquire+0x26c/0x300 [ 3290.970493] ? flush_workqueue+0x87/0x4a0 [ 3290.970503] ? __raw_spin_lock_init+0x3b/0x60 [ 3290.970510] ? lockdep_init_map_type+0x58/0x240 [ 3290.970519] flush_workqueue+0xae/0x4a0 [ 3290.970526] ? flush_workqueue+0x87/0x4a0 [ 3290.970544] ? drain_workqueue+0xa1/0x130 [ 3290.970552] drain_workqueue+0xa1/0x130 [ 3290.970561] destroy_workqueue+0x34/0x1f0 [ 3290.970572] hci_release_dev+0x49/0x180 [bluetooth] [ 3290.970624] bt_host_release+0x1d/0x30 [bluetooth] [ 3290.970687] device_release+0x33/0x90 [ 3290.970695] kobject_release+0x63/0x160 [ 3290.970705] dpm_resume+0x164/0x3e0 [ 3290.970710] ? dpm_resume_early+0x251/0x3b0 [ 3290.970718] dpm_resume_end+0xd/0x20 [ 3290.970723] suspend_devices_and_enter+0x1a4/0xba0 [ 3290.970737] pm_suspend+0x26b/0x310 [ 3290.970746] state_store+0x42/0x90 [ 3290.970755] kernfs_fop_write_iter+0x135/0x1b0 [ 3290.970764] new_sync_write+0x125/0x1c0 [ 3290.970777] vfs_write+0x360/0x3c0 [ 3290.970785] ksys_write+0xa7/0xe0 [ 3290.970794] do_syscall_64+0x3a/0x80 [ 3290.970803] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 3290.970811] RIP: 0033:0x7f41b1328164 [ 3290.970819] Code: 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 80 00 00 00 00 8b 05 4a d2 2c 00 48 63 ff 85 c0 75 13 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 f3 c3 66 90 55 53 48 89 d5 48 89 f3 48 83 [ 3290.970824] RSP: 002b:00007ffe6ae21b28 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 [ 3290.970831] RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007f41b1328164 [ 3290.970836] RDX: 0000000000000004 RSI: 000055965e651070 RDI: 0000000000000004 [ 3290.970839] RBP: 000055965e651070 R08: 000055965e64f390 R09: 00007f41b1e3d1c0 [ 3290.970843] R10: 000000000000000a R11: 0000000000000246 R12: 0000000000000004 [ 3290.970846] R13: 0000000000000001 R14: 000055965e64f2b0 R15: 0000000000000004 Cc: All applicable <stable@vger.kernel.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Patch series "Solve silent data loss caused by poisoned page cache (shmem/tmpfs)", v5. When discussing the patch that splits page cache THP in order to offline the poisoned page, Noaya mentioned there is a bigger problem [1] that prevents this from working since the page cache page will be truncated if uncorrectable errors happen. By looking this deeper it turns out this approach (truncating poisoned page) may incur silent data loss for all non-readonly filesystems if the page is dirty. It may be worse for in-memory filesystem, e.g. shmem/tmpfs since the data blocks are actually gone. To solve this problem we could keep the poisoned dirty page in page cache then notify the users on any later access, e.g. page fault, read/write, etc. The clean page could be truncated as is since they can be reread from disk later on. The consequence is the filesystems may find poisoned page and manipulate it as healthy page since all the filesystems actually don't check if the page is poisoned or not in all the relevant paths except page fault. In general, we need make the filesystems be aware of poisoned page before we could keep the poisoned page in page cache in order to solve the data loss problem. To make filesystems be aware of poisoned page we should consider: - The page should be not written back: clearing dirty flag could prevent from writeback. - The page should not be dropped (it shows as a clean page) by drop caches or other callers: the refcount pin from hwpoison could prevent from invalidating (called by cache drop, inode cache shrinking, etc), but it doesn't avoid invalidation in DIO path. - The page should be able to get truncated/hole punched/unlinked: it works as it is. - Notify users when the page is accessed, e.g. read/write, page fault and other paths (compression, encryption, etc). The scope of the last one is huge since almost all filesystems need do it once a page is returned from page cache lookup. There are a couple of options to do it: 1. Check hwpoison flag for every path, the most straightforward way. 2. Return NULL for poisoned page from page cache lookup, the most callsites check if NULL is returned, this should have least work I think. But the error handling in filesystems just return -ENOMEM, the error code will incur confusion to the users obviously. 3. To improve #2, we could return error pointer, e.g. ERR_PTR(-EIO), but this will involve significant amount of code change as well since all the paths need check if the pointer is ERR or not just like option #1. I did prototypes for both #1 and #3, but it seems #3 may require more changes than #1. For #3 ERR_PTR will be returned so all the callers need to check the return value otherwise invalid pointer may be dereferenced, but not all callers really care about the content of the page, for example, partial truncate which just sets the truncated range in one page to 0. So for such paths it needs additional modification if ERR_PTR is returned. And if the callers have their own way to handle the problematic pages we need to add a new FGP flag to tell FGP functions to return the pointer to the page. It may happen very rarely, but once it happens the consequence (data corruption) could be very bad and it is very hard to debug. It seems this problem had been slightly discussed before, but seems no action was taken at that time. [2] As the aforementioned investigation, it needs huge amount of work to solve the potential data loss for all filesystems. But it is much easier for in-memory filesystems and such filesystems actually suffer more than others since even the data blocks are gone due to truncating. So this patchset starts from shmem/tmpfs by taking option #1. TODO: * The unpoison has been broken since commit 0ed950d ("mm,hwpoison: make get_hwpoison_page() call get_any_page()"), and this patch series make refcount check for unpoisoning shmem page fail. * Expand to other filesystems. But I haven't heard feedback from filesystem developers yet. Patch breakdown: Patch #1: cleanup, depended by patch #2 Patch #2: fix THP with hwpoisoned subpage(s) PMD map bug Patch #3: coding style cleanup Patch #4: refactor and preparation. Patch #5: keep the poisoned page in page cache and handle such case for all the paths. Patch #6: the previous patches unblock page cache THP split, so this patch add page cache THP split support. This patch (of 4): A minor cleanup to the indent. Link: https://lkml.kernel.org/r/20211020210755.23964-1-shy828301@gmail.com Link: https://lkml.kernel.org/r/20211020210755.23964-4-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ido Schimmel says: ==================== mlxsw: Add support for VxLAN with IPv6 underlay So far, mlxsw only supported VxLAN with IPv4 underlay. This patchset extends mlxsw to also support VxLAN with IPv6 underlay. The main difference is related to the way IPv6 addresses are handled by the device. See patch #1 for a detailed explanation. Patch #1 creates a common hash table to store the mapping from IPv6 addresses to KVDL indexes. This table is useful for both IP-in-IP and VxLAN tunnels with an IPv6 underlay. Patch #2 converts the IP-in-IP code to use the new hash table. Patches #3-#6 are preparations. Patch #7 finally adds support for VxLAN with IPv6 underlay. Patch #8 removes a test case that checked that VxLAN configurations with IPv6 underlay are vetoed by the driver. A follow-up patchset will add forwarding selftests. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
In line: upper = info->upper_dev; We access upper_dev field, which is related only for particular events (e.g. event == NETDEV_CHANGEUPPER). So, this line cause invalid memory access for another events, when ptr is not netdev_notifier_changeupper_info. The KASAN logs are as follows: [ 30.123165] BUG: KASAN: stack-out-of-bounds in prestera_netdev_port_event.constprop.0+0x68/0x538 [prestera] [ 30.133336] Read of size 8 at addr ffff80000cf772b0 by task udevd/778 [ 30.139866] [ 30.141398] CPU: 0 PID: 778 Comm: udevd Not tainted 5.16.0-rc3 #6 [ 30.147588] Hardware name: DNI AmazonGo1 A7040 board (DT) [ 30.153056] Call trace: [ 30.155547] dump_backtrace+0x0/0x2c0 [ 30.159320] show_stack+0x18/0x30 [ 30.162729] dump_stack_lvl+0x68/0x84 [ 30.166491] print_address_description.constprop.0+0x74/0x2b8 [ 30.172346] kasan_report+0x1e8/0x250 [ 30.176102] __asan_load8+0x98/0xe0 [ 30.179682] prestera_netdev_port_event.constprop.0+0x68/0x538 [prestera] [ 30.186847] prestera_netdev_event_handler+0x1b4/0x1c0 [prestera] [ 30.193313] raw_notifier_call_chain+0x74/0xa0 [ 30.197860] call_netdevice_notifiers_info+0x68/0xc0 [ 30.202924] register_netdevice+0x3cc/0x760 [ 30.207190] register_netdev+0x24/0x50 [ 30.211015] prestera_device_register+0x8a0/0xba0 [prestera] Fixes: 3d5048c ("net: marvell: prestera: move netdev topology validation to prestera_main") Signed-off-by: Yevhen Orlov <yevhen.orlov@plvision.eu> Link: https://lore.kernel.org/r/20211216171714.11341-1-yevhen.orlov@plvision.eu Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The fixed commit attempts to close inject.output even if it was never opened e.g. $ perf record uname Linux [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.002 MB perf.data (7 samples) ] $ perf inject -i perf.data --vm-time-correlation=dry-run Segmentation fault (core dumped) $ gdb --quiet perf Reading symbols from perf... (gdb) r inject -i perf.data --vm-time-correlation=dry-run Starting program: /home/ahunter/bin/perf inject -i perf.data --vm-time-correlation=dry-run [Thread debugging using libthread_db enabled] Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1". Program received signal SIGSEGV, Segmentation fault. 0x00007eff8afeef5b in _IO_new_fclose (fp=0x0) at iofclose.c:48 48 iofclose.c: No such file or directory. (gdb) bt #0 0x00007eff8afeef5b in _IO_new_fclose (fp=0x0) at iofclose.c:48 #1 0x0000557fc7b74f92 in perf_data__close (data=data@entry=0x7ffcdafa6578) at util/data.c:376 #2 0x0000557fc7a6b807 in cmd_inject (argc=<optimized out>, argv=<optimized out>) at builtin-inject.c:1085 #3 0x0000557fc7ac4783 in run_builtin (p=0x557fc8074878 <commands+600>, argc=4, argv=0x7ffcdafb6a60) at perf.c:313 #4 0x0000557fc7a25d5c in handle_internal_command (argv=<optimized out>, argc=<optimized out>) at perf.c:365 #5 run_argv (argcp=<optimized out>, argv=<optimized out>) at perf.c:409 #6 main (argc=4, argv=0x7ffcdafb6a60) at perf.c:539 (gdb) Fixes: 02e6246 ("perf inject: Close inject.output on exit") Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Riccardo Mancini <rickyman7@gmail.com> Cc: stable@vger.kernel.org Link: http://lore.kernel.org/lkml/20211213084829.114772-2-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
The fixed commit attempts to get the output file descriptor even if the file was never opened e.g. $ perf record uname Linux [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.002 MB perf.data (7 samples) ] $ perf inject -i perf.data --vm-time-correlation=dry-run Segmentation fault (core dumped) $ gdb --quiet perf Reading symbols from perf... (gdb) r inject -i perf.data --vm-time-correlation=dry-run Starting program: /home/ahunter/bin/perf inject -i perf.data --vm-time-correlation=dry-run [Thread debugging using libthread_db enabled] Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1". Program received signal SIGSEGV, Segmentation fault. __GI___fileno (fp=0x0) at fileno.c:35 35 fileno.c: No such file or directory. (gdb) bt #0 __GI___fileno (fp=0x0) at fileno.c:35 #1 0x00005621e48dd987 in perf_data__fd (data=0x7fff4c68bd08) at util/data.h:72 #2 perf_data__fd (data=0x7fff4c68bd08) at util/data.h:69 #3 cmd_inject (argc=<optimized out>, argv=0x7fff4c69c1f0) at builtin-inject.c:1017 #4 0x00005621e4936783 in run_builtin (p=0x5621e4ee6878 <commands+600>, argc=4, argv=0x7fff4c69c1f0) at perf.c:313 #5 0x00005621e4897d5c in handle_internal_command (argv=<optimized out>, argc=<optimized out>) at perf.c:365 #6 run_argv (argcp=<optimized out>, argv=<optimized out>) at perf.c:409 #7 main (argc=4, argv=0x7fff4c69c1f0) at perf.c:539 (gdb) Fixes: 0ae0389 ("perf tools: Pass a fd to perf_file_header__read_pipe()") Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Riccardo Mancini <rickyman7@gmail.com> Cc: stable@vger.kernel.org Link: http://lore.kernel.org/lkml/20211213084829.114772-3-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Amit Cohen says: ==================== Add tests for VxLAN with IPv6 underlay mlxsw driver lately added support for VxLAN with IPv6 underlay. This set adds the relevant tests for IPv6, most of them are same to IPv4 tests with the required changes. Patch set overview: Patch #1 relaxes requirements for offloading TC filters that match on 802.1q fields. The following selftests make use of these newly-relaxed filters. Patch #2 adds preparation as part of selftests API, which will be used later. Patches #3-#4 add tests for VxLAN with bridge aware and unaware. Patche #5 cleans unused function. Patches #6-#7 add tests for VxLAN symmetric and asymmetric. Patch #8 adds test for Q-in-VNI. ==================== Link: https://lore.kernel.org/r/20211221144949.2527545-1-amcohen@nvidia.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Amit Cohen says: ==================== mlxsw: Add tests for VxLAN with IPv6 underlay mlxsw driver lately added support for VxLAN with IPv6 underlay. This set adds tests for IPv6, which are dedicated for mlxsw. Patch set overview: Patches #1-#2 make vxlan.sh test more flexible and extend it for IPv6 Patches #3-#4 make vxlan_fdb_veto.sh test more flexible and extend it for IPv6 Patches #5-#6 add tests for VxLAN flooding for different ASICs Patches #7-#8 add test for VxLAN related traps and align the existing test ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
Ido Schimmel says: ==================== mlxsw: Add Spectrum-4 support This patchset adds Spectrum-4 support in mlxsw. It builds on top of a previous patchset merged in commit 10184da ("Merge branch 'mlxsw-Spectrum-4-prep'") and makes two additional changes before adding Spectrum-4 support. Patchset overview: Patches #1-#2 add a few Spectrum-4 specific variants of existing ACL keys. The new variants are needed because the size of certain key elements (e.g., local port) was increased in Spectrum-4. Patches #3-#6 are preparations. Patch #7 implements the Spectrum-4 variant of the Bloom filter hash function. The Bloom filter is used to optimize ACL lookups by potentially skipping certain lookups if they are guaranteed not to match. See additional info in merge commit ae6750e ("Merge branch 'mlxsw-spectrum_acl-Add-Bloom-filter-support'"). Patch #8 finally adds Spectrum-4 support. ==================== Link: https://lore.kernel.org/r/20220106160652.821176-1-idosch@nvidia.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Ido Schimmel says: ==================== mlxsw: Add RJ45 ports support We are in the process of qualifying a new system that has RJ45 ports as opposed to the transceiver modules (e.g., SFP, QSFP) present on all existing systems. This patchset adds support for these ports in mlxsw by adding a couple of missing BaseT link modes and rejecting ethtool operations that are specific to transceiver modules. Patchset overview: Patches #1-#3 are cleanups and preparations. Patch #4 adds support for two new link modes. Patches #5-#6 query and cache the port module's type (e.g., QSFP, RJ45) during initialization. Patches #7-#9 forbid ethtool operations that are invalid on RJ45 ports. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
Ido Schimmel says: ==================== mlxsw: Various updates This patchset contains miscellaneous updates for mlxsw. No user visible changes that I am aware of. Patches #1-#5 rework registration of internal traps in preparation of line cards support. Patch #6 improves driver resilience against a misbehaving device. Patch #7 prevents the driver from overwriting device internal actions. See the commit message for more details. ==================== Link: https://lore.kernel.org/r/20220127090226.283442-1-idosch@nvidia.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The SRv6 layer allows defining HMAC data that can later be used to sign IPv6 Segment Routing Headers. This configuration is realised via netlink through four attributes: SEG6_ATTR_HMACKEYID, SEG6_ATTR_SECRET, SEG6_ATTR_SECRETLEN and SEG6_ATTR_ALGID. Because the SECRETLEN attribute is decoupled from the actual length of the SECRET attribute, it is possible to provide invalid combinations (e.g., secret = "", secretlen = 64). This case is not checked in the code and with an appropriately crafted netlink message, an out-of-bounds read of up to 64 bytes (max secret length) can occur past the skb end pointer and into skb_shared_info: Breakpoint 1, seg6_genl_sethmac (skb=<optimized out>, info=<optimized out>) at net/ipv6/seg6.c:208 208 memcpy(hinfo->secret, secret, slen); (gdb) bt #0 seg6_genl_sethmac (skb=<optimized out>, info=<optimized out>) at net/ipv6/seg6.c:208 #1 0xffffffff81e012e9 in genl_family_rcv_msg_doit (skb=skb@entry=0xffff88800b1f9f00, nlh=nlh@entry=0xffff88800b1b7600, extack=extack@entry=0xffffc90000ba7af0, ops=ops@entry=0xffffc90000ba7a80, hdrlen=4, net=0xffffffff84237580 <init_net>, family=<optimized out>, family=<optimized out>) at net/netlink/genetlink.c:731 #2 0xffffffff81e01435 in genl_family_rcv_msg (extack=0xffffc90000ba7af0, nlh=0xffff88800b1b7600, skb=0xffff88800b1f9f00, family=0xffffffff82fef6c0 <seg6_genl_family>) at net/netlink/genetlink.c:775 #3 genl_rcv_msg (skb=0xffff88800b1f9f00, nlh=0xffff88800b1b7600, extack=0xffffc90000ba7af0) at net/netlink/genetlink.c:792 #4 0xffffffff81dfffc3 in netlink_rcv_skb (skb=skb@entry=0xffff88800b1f9f00, cb=cb@entry=0xffffffff81e01350 <genl_rcv_msg>) at net/netlink/af_netlink.c:2501 #5 0xffffffff81e00919 in genl_rcv (skb=0xffff88800b1f9f00) at net/netlink/genetlink.c:803 #6 0xffffffff81dff6ae in netlink_unicast_kernel (ssk=0xffff888010eec800, skb=0xffff88800b1f9f00, sk=0xffff888004aed000) at net/netlink/af_netlink.c:1319 #7 netlink_unicast (ssk=ssk@entry=0xffff888010eec800, skb=skb@entry=0xffff88800b1f9f00, portid=portid@entry=0, nonblock=<optimized out>) at net/netlink/af_netlink.c:1345 #8 0xffffffff81dff9a4 in netlink_sendmsg (sock=<optimized out>, msg=0xffffc90000ba7e48, len=<optimized out>) at net/netlink/af_netlink.c:1921 ... (gdb) p/x ((struct sk_buff *)0xffff88800b1f9f00)->head + ((struct sk_buff *)0xffff88800b1f9f00)->end $1 = 0xffff88800b1b76c0 (gdb) p/x secret $2 = 0xffff88800b1b76c0 (gdb) p slen $3 = 64 '@' The OOB data can then be read back from userspace by dumping HMAC state. This commit fixes this by ensuring SECRETLEN cannot exceed the actual length of SECRET. Reported-by: Lucas Leong <wmliang.tw@gmail.com> Tested: verified that EINVAL is correctly returned when secretlen > len(secret) Fixes: 4f4853d ("ipv6: sr: implement API to control SR HMAC structure") Signed-off-by: David Lebrun <dlebrun@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
The system call gate area counts as kernel text but trying to install a kprobe in this area fails with an Oops later on. To fix this explicitly disallow the gate area for kprobes. Found by syzkaller with the following reproducer: perf_event_open$cgroup(&(0x7f00000001c0)={0x6, 0x80, 0x0, 0x0, 0x0, 0x0, 0x80ffff, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, @perf_config_ext={0x0, 0xffffffffff600000}}, 0xffffffffffffffff, 0x0, 0xffffffffffffffff, 0x0) Sample report: BUG: unable to handle page fault for address: fffffbfff3ac6000 PGD 6dfcb067 P4D 6dfcb067 PUD 6df8f067 PMD 6de4d067 PTE 0 Oops: 0000 [#1] PREEMPT SMP KASAN NOPTI CPU: 0 PID: 21978 Comm: syz-executor.2 Not tainted 6.0.0-rc3-00363-g7726d4c3e60b-dirty #6 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:__insn_get_emulate_prefix arch/x86/lib/insn.c:91 [inline] RIP: 0010:insn_get_emulate_prefix arch/x86/lib/insn.c:106 [inline] RIP: 0010:insn_get_prefixes.part.0+0xa8/0x1110 arch/x86/lib/insn.c:134 Code: 49 be 00 00 00 00 00 fc ff df 48 8b 40 60 48 89 44 24 08 e9 81 00 00 00 e8 e5 4b 39 ff 4c 89 fa 4c 89 f9 48 c1 ea 03 83 e1 07 <42> 0f b6 14 32 38 ca 7f 08 84 d2 0f 85 06 10 00 00 48 89 d8 48 89 RSP: 0018:ffffc900088bf860 EFLAGS: 00010246 RAX: 0000000000040000 RBX: ffffffff9b9bebc0 RCX: 0000000000000000 RDX: 1ffffffff3ac6000 RSI: ffffc90002d82000 RDI: ffffc900088bf9e8 RBP: ffffffff9d630001 R08: 0000000000000000 R09: ffffc900088bf9e8 R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000001 R13: ffffffff9d630000 R14: dffffc0000000000 R15: ffffffff9d630000 FS: 00007f63eef63640(0000) GS:ffff88806d000000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: fffffbfff3ac6000 CR3: 0000000029d90005 CR4: 0000000000770ef0 PKRU: 55555554 Call Trace: <TASK> insn_get_prefixes arch/x86/lib/insn.c:131 [inline] insn_get_opcode arch/x86/lib/insn.c:272 [inline] insn_get_modrm+0x64a/0x7b0 arch/x86/lib/insn.c:343 insn_get_sib+0x29a/0x330 arch/x86/lib/insn.c:421 insn_get_displacement+0x350/0x6b0 arch/x86/lib/insn.c:464 insn_get_immediate arch/x86/lib/insn.c:632 [inline] insn_get_length arch/x86/lib/insn.c:707 [inline] insn_decode+0x43a/0x490 arch/x86/lib/insn.c:747 can_probe+0xfc/0x1d0 arch/x86/kernel/kprobes/core.c:282 arch_prepare_kprobe+0x79/0x1c0 arch/x86/kernel/kprobes/core.c:739 prepare_kprobe kernel/kprobes.c:1160 [inline] register_kprobe kernel/kprobes.c:1641 [inline] register_kprobe+0xb6e/0x1690 kernel/kprobes.c:1603 __register_trace_kprobe kernel/trace/trace_kprobe.c:509 [inline] __register_trace_kprobe+0x26a/0x2d0 kernel/trace/trace_kprobe.c:477 create_local_trace_kprobe+0x1f7/0x350 kernel/trace/trace_kprobe.c:1833 perf_kprobe_init+0x18c/0x280 kernel/trace/trace_event_perf.c:271 perf_kprobe_event_init+0xf8/0x1c0 kernel/events/core.c:9888 perf_try_init_event+0x12d/0x570 kernel/events/core.c:11261 perf_init_event kernel/events/core.c:11325 [inline] perf_event_alloc.part.0+0xf7f/0x36a0 kernel/events/core.c:11619 perf_event_alloc kernel/events/core.c:12059 [inline] __do_sys_perf_event_open+0x4a8/0x2a00 kernel/events/core.c:12157 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x38/0x90 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f63ef7efaed Code: 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f63eef63028 EFLAGS: 00000246 ORIG_RAX: 000000000000012a RAX: ffffffffffffffda RBX: 00007f63ef90ff80 RCX: 00007f63ef7efaed RDX: 0000000000000000 RSI: ffffffffffffffff RDI: 00000000200001c0 RBP: 00007f63ef86019c R08: 0000000000000000 R09: 0000000000000000 R10: ffffffffffffffff R11: 0000000000000246 R12: 0000000000000000 R13: 0000000000000002 R14: 00007f63ef90ff80 R15: 00007f63eef43000 </TASK> Modules linked in: CR2: fffffbfff3ac6000 ---[ end trace 0000000000000000 ]--- RIP: 0010:__insn_get_emulate_prefix arch/x86/lib/insn.c:91 [inline] RIP: 0010:insn_get_emulate_prefix arch/x86/lib/insn.c:106 [inline] RIP: 0010:insn_get_prefixes.part.0+0xa8/0x1110 arch/x86/lib/insn.c:134 Code: 49 be 00 00 00 00 00 fc ff df 48 8b 40 60 48 89 44 24 08 e9 81 00 00 00 e8 e5 4b 39 ff 4c 89 fa 4c 89 f9 48 c1 ea 03 83 e1 07 <42> 0f b6 14 32 38 ca 7f 08 84 d2 0f 85 06 10 00 00 48 89 d8 48 89 RSP: 0018:ffffc900088bf860 EFLAGS: 00010246 RAX: 0000000000040000 RBX: ffffffff9b9bebc0 RCX: 0000000000000000 RDX: 1ffffffff3ac6000 RSI: ffffc90002d82000 RDI: ffffc900088bf9e8 RBP: ffffffff9d630001 R08: 0000000000000000 R09: ffffc900088bf9e8 R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000001 R13: ffffffff9d630000 R14: dffffc0000000000 R15: ffffffff9d630000 FS: 00007f63eef63640(0000) GS:ffff88806d000000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: fffffbfff3ac6000 CR3: 0000000029d90005 CR4: 0000000000770ef0 PKRU: 55555554 ================================================================== Link: https://lkml.kernel.org/r/20220907200917.654103-1-lk@c--e.de cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> cc: "David S. Miller" <davem@davemloft.net> Cc: stable@vger.kernel.org Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Christian A. Ehrhardt <lk@c--e.de> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
If an AF_PACKET socket is used to send packets through ipvlan and the default xmit function of the AF_PACKET socket is changed from dev_queue_xmit() to packet_direct_xmit() via setsockopt() with the option name of PACKET_QDISC_BYPASS, the skb->mac_header may not be reset and remains as the initial value of 65535, this may trigger slab-out-of-bounds bugs as following: ================================================================= UG: KASAN: slab-out-of-bounds in ipvlan_xmit_mode_l2+0xdb/0x330 [ipvlan] PU: 2 PID: 1768 Comm: raw_send Kdump: loaded Not tainted 6.0.0-rc4+ #6 ardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 all Trace: print_address_description.constprop.0+0x1d/0x160 print_report.cold+0x4f/0x112 kasan_report+0xa3/0x130 ipvlan_xmit_mode_l2+0xdb/0x330 [ipvlan] ipvlan_start_xmit+0x29/0xa0 [ipvlan] __dev_direct_xmit+0x2e2/0x380 packet_direct_xmit+0x22/0x60 packet_snd+0x7c9/0xc40 sock_sendmsg+0x9a/0xa0 __sys_sendto+0x18a/0x230 __x64_sys_sendto+0x74/0x90 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd The root cause is: 1. packet_snd() only reset skb->mac_header when sock->type is SOCK_RAW and skb->protocol is not specified as in packet_parse_headers() 2. packet_direct_xmit() doesn't reset skb->mac_header as dev_queue_xmit() In this case, skb->mac_header is 65535 when ipvlan_xmit_mode_l2() is called. So when ipvlan_xmit_mode_l2() gets mac header with eth_hdr() which use "skb->head + skb->mac_header", out-of-bound access occurs. This patch replaces eth_hdr() with skb_eth_hdr() in ipvlan_xmit_mode_l2() and reset mac header in multicast to solve this out-of-bound bug. Fixes: 2ad7bf3 ("ipvlan: Initial check-in of the IPVLAN driver.") Signed-off-by: Lu Wei <luwei32@huawei.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
This is merged upstream, closing |
Here it is a c&p of the commit msg. Github doesn't show the "1" and friends correctly, but that is common use on the linux commit msg IIRC.
Alban Crequy reported a race condition userspace faces when we want to
add an fd and make the same syscall return that value1.
Currently two different ioctl() calls are needed by the process handling
the syscalls (agent) for another userspace process (target). Therefore,
it is possible for the agent to do the first ioctl to add a file
descriptor but the target is interrupted (EINTR) before the agent does
the second ioctl() call.
This patch adds a flag to the ADDFD ioctl() so it adds the fd and
returns that value atomically to the target program, as suggested by
Kees Cook2. This is done by simply allowing
seccomp_do_user_notification() to add the fd and return it in this
case. Therefore, in this case the target wakes up from the wait in
seccomp_do_user_notification() either to interrupt the syscall or to add
the fd and return it.
The struct seccomp_notif_resp, used when doing SECCOMP_IOCTL_NOTIF_SEND
ioctl() to send a response to the target, has three more fields that we
don't allow to set when doing the addfd ioctl() to also return. The
reasons to disallow each field are:
it is pointless in this case as we want to return the value.
syscall. This seems pointless, as we want the syscall to return the
allocated fd.
How to use
See the selftest example
Testing done
Used the selftest example and a local test to read the fd here.
Missing stuff: