Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Migrate onnxrewriter #1346

Merged
merged 3 commits into from
Apr 5, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
The table of contents is too big for display.
Diff view
Diff view
  •  
  •  
  •  
2 changes: 2 additions & 0 deletions .gitattributes
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
**/*.pb filter=lfs diff=lfs merge=lfs -text
**/*.onnx filter=lfs diff=lfs merge=lfs -text
2 changes: 2 additions & 0 deletions .github/workflows/main.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -67,6 +67,8 @@ jobs:
python-version: ${{ matrix.python-version }}
- name: Install nox
run: python -m pip install nox
- name: Pull Test Data
run: git lfs pull
- name: Run tests
run: nox -t ${{ matrix.nox-tag }} --forcecolor -- -v --cov=onnxscript --cov-report=xml --cov-append --cov-branch -n=auto --junit-xml pytest.xml
env:
Expand Down
33 changes: 27 additions & 6 deletions .lintrunner.toml
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ include_patterns = [
'**/*.pyi',
]
exclude_patterns = [
'onnxscript/tests/models/**',
'tests/models/**',
]
command = [
'python',
Expand Down Expand Up @@ -43,9 +43,26 @@ exclude_patterns = [
'onnxscript/evaluator_test.py',
'onnxscript/evaluator.py',
'onnxscript/onnx_types.py',
'onnxscript/tests/**', # Skip linting test files for speed
'tests/**', # Skip linting test files for speed
'onnxscript/**/*_test.py', # Skip linting test files for speed
'onnxscript/function_libs/torch_lib/ops/**', # Operators typing do not play well with mypy
'onnxscript/optimizer/evaluator.py', # FIXME
'onnxscript/optimizer/constant_folding.py', # FIXME
'onnxscript/_legacy_ir/__init__.py', # FIXME
'onnxscript/rewriter/onnxruntime/transformers/fastgelu.py', # FIXME
'onnxscript/rewriter/onnxruntime/instance_to_group_normalization.py', # FIXME
'onnxscript/rewriter/function_rule.py', # FIXME
'onnxscript/_legacy_ir/irbuilder.py', # FIXME
'onnxscript/optimizer/fold_constants_v0.py', # FIXME
'onnxscript/rewriter/pattern.py', # FIXME
'onnxscript/rewriter/onnxruntime/transformers/multihead_attention.py', # FIXME
'onnxscript/tools/function_unittest_producer.py', # FIXME
'onnxscript/_legacy_ir/visitor.py', # FIXME
'onnxscript/_legacy_ir/protobuilder.py', # FIXME
'onnxscript/rewriter/onnxruntime/transformers/layernorm.py', # FIXME
'onnxscript/ir/serde.py', # FIXME
'onnxrewriter/rewriter/generic_pattern_test.py', # FIXME
'onnxrewriter/rewriter/generic_pattern.py', # FIXME
]
command = [
'python',
Expand Down Expand Up @@ -74,7 +91,7 @@ include_patterns = [
'**/*.py',
]
exclude_patterns = [
'onnxscript/tests/onnx_backend_test_code/**',
'tests/onnx_backend_test_code/**',
]
command = [
'python',
Expand Down Expand Up @@ -102,12 +119,16 @@ include_patterns = [
'**/*.py',
]
exclude_patterns = [
'examples/**', # TODO: Merge with docs/examples
'docs/examples/**',
'docs/tutorial/examples/**',
'onnxscript/converter_test.py',
'onnxscript/tests/functions/**',
'onnxscript/tests/models/**',
'onnxscript/tests/onnx_backend_test_code/**',
'tests/functions/**',
'tests/models/**',
'tests/onnx_backend_test_code/**',
'onnxscript/optimizer/**', # FIXME
'onnxscript/rewriter/**', # FIXME
'onnxscript/_legacy_ir/**', # FIXME
]
command = [
'python',
Expand Down
191 changes: 191 additions & 0 deletions examples/pattern_rewriting.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,191 @@
"""Onnx Pattern Rewriting.

This script shows how to define a rewriting rule based on patterns.
The objective is to replace some nodes in an onnx model into another
sequence of nodes but more efficient.

First a dummy model
===================
"""

import numpy as np
import onnx
import onnx.helper as oh
import onnx.numpy_helper as onh

import onnxscript
import onnxscript._legacy_ir as oir
import onnxscript.rewriter.generic_pattern as org


def get_rotary_model(bad_model=False):
inputs = [
oh.make_tensor_value_info("x", onnx.TensorProto.INT64, shape=[]),
oh.make_tensor_value_info("pos_ids", onnx.TensorProto.FLOAT, shape=[]),
oh.make_tensor_value_info("axis", onnx.TensorProto.INT64, shape=[]),
]
nodes = [
oh.make_node("Unsqueeze", ["x", "axis"], ["_onx_unsqueeze0"]),
oh.make_node("Cast", ["_onx_unsqueeze0"], ["_onx_cast0"], to=1),
oh.make_node("MatMul", ["pos_ids", "_onx_cast0"], ["_onx_matmul0"]),
oh.make_node("Transpose", ["_onx_matmul0"], ["_onx_transpose0"]),
oh.make_node(
"ConcatTrainingBad" if bad_model else "ConcatTraining",
["_onx_transpose0", "_onx_transpose0"],
["_onx_concattraining0", "_onx_concattraining1"],
domain="com.microsoft",
),
oh.make_node("Sin", ["_onx_concattraining0"], ["_onx_sin0"]),
oh.make_node("Cast", ["_onx_sin0"], ["_onx_cast02"], to=1),
oh.make_node("Cos", ["_onx_concattraining0"], ["_onx_cos0"]),
oh.make_node("Cast", ["_onx_cos0"], ["_onx_cast03"], to=1),
]
outputs = [
oh.make_tensor_value_info("_onx_cast02", onnx.TensorProto.UNDEFINED, []),
oh.make_tensor_value_info("_onx_cast03", onnx.TensorProto.UNDEFINED, []),
]
model = oh.make_model(
oh.make_graph(
nodes,
"experiment",
inputs,
outputs,
),
opset_imports=[
oh.make_opsetid("", 18),
oh.make_opsetid("com.microsoft", 18),
],
)
return model


model = get_rotary_model()
ir_model = oir.irbuilder.build_ir(model)


####################################
# The rewriting pattern
# =====================

op = onnxscript.opset18
msft_op = onnxscript.values.Opset("com.microsoft", 1)


def rotary_match_pattern(x, pos_ids, axis):
"""The pattern to match."""
unsqueeze = op.Unsqueeze(x, axis)
cast = op.Cast(unsqueeze, to=onnx.TensorProto.FLOAT)

matmul = op.MatMul(pos_ids, cast)
transpose = op.Transpose(matmul)
output, length = msft_op.ConcatTraining(transpose, transpose)

sin = op.Sin(output)
cast1 = op.Cast(sin, to=onnx.TensorProto.FLOAT)
cos = op.Cos(output)
cast2 = op.Cast(cos, to=onnx.TensorProto.FLOAT)
return cast1, cast2


def validate_rotary_mapping(g, matched_nodes, added_nodes) -> bool:
"""The validation post matching.

Returns True to validate the replacement,
False not to apply it.

:param g: model
:param matched_nodes: matched nodes
:param added_nodes: nodes replacing the matched nodes
"""
del g
del matched_nodes
del added_nodes
return True


def rotary_apply_pattern(x, pos_ids, axis):
"""The replacement pattern."""
cos_cache = op.Constant(value=onh.from_array(np.random.rand(256, 256).astype(np.float16)))
sin_cache = op.Constant(value=onh.from_array(np.random.rand(256, 256).astype(np.float16)))
part1, part2 = msft_op.RotaryEmbedding(x, pos_ids, cos_cache, sin_cache)
return part1, part2


###########################
# The rule
# ========
#
# The rule is easy to create.


rule = org.make_pattern_rule(

Check warning

Code scanning / CodeQL

Variable defined multiple times Warning

This assignment to 'rule' is unnecessary as it is
redefined
before this value is used.
rotary_match_pattern,
rotary_apply_pattern,
validate_rotary_mapping,
)

################################
# ``validate_rotary_mapping`` always return True.
# This argument can be ignored in that case.

rule = org.make_pattern_rule(rotary_match_pattern, rotary_apply_pattern)

##########################
# Let's apply it.
rule.apply_to_model(ir_model)


########################
# And finally, we can generate the model.

opt_onx = oir.protobuilder.build_model_proto(ir_model)

########################
# Let's see what it looks like.

for node in opt_onx.graph.node:
print(f"{node.op_type}({', '.join(node.input)}) -> {', '.join(node.output)}")

#############################
# What if it fails?
# =================


model = get_rotary_model(True)
ir_model = oir.irbuilder.build_ir(model)

rule.apply_to_model(ir_model)
opt_onx = oir.protobuilder.build_model_proto(ir_model)

print([n.op_type for n in opt_onx.graph.node])

################################
# The match did not happen.
# Let's increase the verbosity.

rule = org.make_pattern_rule(rotary_match_pattern, rotary_apply_pattern, verbose=10)

rule.apply_to_model(ir_model)

######################################
# The logs shows every time the algorithm rejected a pattern.
# We can see the following:
#
# ::
#
# [OnnxGenericPattern.match] NONE - line: 673:onnxscript.rewriter.generic_pattern, op_type=Cast
# --hint--: BACKWARD: different node types
# --pattern
# ConcatTraining(transpose, transpose) -> (output, length)
# -- model
# ConcatTrainingBad(_onx_transpose0, _onx_transpose0) -> (_onx_concattraining0, _onx_concattraining1)
# iteration=1
# --marked-- #2
# Cast(_onx_cos0) ~ Cast(cos) [140186194226496-140186194222320]
# Cos(_onx_concattraining0) ~ Cos(output) [140186194230816-140186194223472]
# len(stacked)=0:[]
#
# Line 673 in file `generic_pattern.py`, the match was rejected.
# It says while comparing two nodes in the backward direction,
# node types do not match.
# It also says that two nodes were actually matched.
Loading
Loading