Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add plot method and data.py to Esri2020 dataset #405

Merged
merged 8 commits into from
Feb 27, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 60 additions & 0 deletions tests/data/esri2020/data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
#!/usr/bin/env python3

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

import hashlib
import os
import random
import shutil

import numpy as np
import rasterio

np.random.seed(0)
random.seed(0)

SIZE = 64


files = [{"image": "N00E020_agb.tif"}, {"image": "N00E020_agb_err.tif"}]


def create_file(path: str, dtype: str, num_channels: int) -> None:
profile = {}
profile["driver"] = "GTiff"
profile["dtype"] = dtype
profile["count"] = num_channels
profile["crs"] = "epsg:4326"
profile["transform"] = rasterio.transform.from_bounds(0, 0, 1, 1, 1, 1)
profile["height"] = SIZE
profile["width"] = SIZE
profile["compress"] = "lzw"
profile["predictor"] = 2

Z = np.random.randint(
np.iinfo(profile["dtype"]).max, size=(1, SIZE, SIZE), dtype=profile["dtype"]
)
src = rasterio.open(path, "w", **profile)
src.write(Z)


if __name__ == "__main__":
dir = "io-lulc-model-001-v01-composite-v03-supercell-v02-clip-v01"
tif_name = "00A_20200101-20210101.tif"

if os.path.exists(dir):
shutil.rmtree(dir)

os.makedirs(dir)

# Create mask file
create_file(os.path.join(dir, tif_name), dtype="int8", num_channels=1)

shutil.make_archive(dir, "zip", base_dir=dir)

# Compute checksums
zipfilename = dir + ".zip"
with open(zipfilename, "rb") as f:
md5 = hashlib.md5(f.read()).hexdigest()
print(f"{zipfilename}: {md5}")
Binary file not shown.
Binary file not shown.
32 changes: 19 additions & 13 deletions tests/datasets/test_esri2020.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ def dataset(
zipfile = "io-lulc-model-001-v01-composite-v03-supercell-v02-clip-v01.zip"
monkeypatch.setattr(Esri2020, "zipfile", zipfile) # type: ignore[attr-defined]

md5 = "4932855fcd00735a34b74b1f87db3df0"
md5 = "34aec55538694171c7b605b0cc0d0138"
monkeypatch.setattr(Esri2020, "md5", md5) # type: ignore[attr-defined]
url = os.path.join(
"tests",
Expand All @@ -45,17 +45,6 @@ def dataset(
transforms = nn.Identity() # type: ignore[attr-defined]
return Esri2020(root, transforms=transforms, download=True, checksum=True)

def test_already_downloaded(self, tmp_path: Path) -> None:
url = os.path.join(
"tests",
"data",
"esri2020",
"io-lulc-model-001-v01-composite-v03-supercell-v02-clip-v01.zip",
)
root = str(tmp_path)
shutil.copy(url, root)
Esri2020(root)

def test_getitem(self, dataset: Esri2020) -> None:
x = dataset[dataset.bounds]
assert isinstance(x, dict)
Expand All @@ -65,6 +54,16 @@ def test_getitem(self, dataset: Esri2020) -> None:
def test_already_extracted(self, dataset: Esri2020) -> None:
Esri2020(root=dataset.root, download=True)

def test_not_extracted(self, tmp_path: Path) -> None:
url = os.path.join(
"tests",
"data",
"esri2020",
"io-lulc-model-001-v01-composite-v03-supercell-v02-clip-v01.zip",
)
shutil.copy(url, tmp_path)
Esri2020(root=str(tmp_path))

def test_not_downloaded(self, tmp_path: Path) -> None:
with pytest.raises(RuntimeError, match="Dataset not found"):
Esri2020(str(tmp_path), checksum=True)
Expand All @@ -80,7 +79,14 @@ def test_or(self, dataset: Esri2020) -> None:
def test_plot(self, dataset: Esri2020) -> None:
query = dataset.bounds
x = dataset[query]
dataset.plot(x["mask"])
dataset.plot(x, suptitle="Test")
plt.close()

def test_plot_prediction(self, dataset: Esri2020) -> None:
query = dataset.bounds
x = dataset[query]
x["prediction"] = x["mask"].clone()
dataset.plot(x, suptitle="Prediction")
plt.close()

def test_url(self) -> None:
Expand Down
49 changes: 47 additions & 2 deletions torchgeo/datasets/esri2020.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,18 +3,18 @@

"""Esri 2020 Land Cover Dataset."""

import abc
import glob
import os
from typing import Any, Callable, Dict, Optional

import matplotlib.pyplot as plt
from rasterio.crs import CRS

from .geo import RasterDataset
from .utils import download_url, extract_archive


class Esri2020(RasterDataset, abc.ABC):
class Esri2020(RasterDataset):
"""Esri 2020 Land Cover Dataset.

The `Esri 2020 Land Cover dataset
Expand Down Expand Up @@ -136,3 +136,48 @@ def _download(self) -> None:
def _extract(self) -> None:
"""Extract the dataset."""
extract_archive(os.path.join(self.root, self.zipfile))

def plot( # type: ignore[override]
self,
sample: Dict[str, Any],
show_titles: bool = True,
suptitle: Optional[str] = None,
) -> plt.Figure:
"""Plot a sample from the dataset.

Args:
sample: a sample returned by :meth:`RasterDataset.__getitem__`
show_titles: flag indicating whether to show titles above each panel
suptitle: optional string to use as a suptitle

Returns:
a matplotlib Figure with the rendered sample
"""
mask = sample["mask"].squeeze()
ncols = 1

showing_predictions = "prediction" in sample
if showing_predictions:
prediction = sample["prediction"].squeeze()
ncols = 2

fig, axs = plt.subplots(nrows=1, ncols=ncols, figsize=(4 * ncols, 4))

if showing_predictions:
axs[0].imshow(mask)
axs[0].axis("off")
axs[1].imshow(prediction)
axs[1].axis("off")
if show_titles:
axs[0].set_title("Mask")
axs[1].set_title("Prediction")
else:
axs.imshow(mask)
axs.axis("off")
if show_titles:
axs.set_title("Mask")

if suptitle is not None:
plt.suptitle(suptitle)

return fig