Skip to content

Commit

Permalink
Merge pull request #9 from mseri/div-inv-set
Browse files Browse the repository at this point in the history
Add definition of divergent orbits invariant set
  • Loading branch information
mseri authored Feb 29, 2024
2 parents cdb1c31 + e7e6eab commit 5ebdd5e
Showing 1 changed file with 7 additions and 3 deletions.
10 changes: 7 additions & 3 deletions BET/Birkhoff.lean
Original file line number Diff line number Diff line change
Expand Up @@ -34,10 +34,12 @@ variable {f g : α → ℝ} (hf : Integrable f μ) (hg : Integrable g μ)
variable (x : α)
variable (n : ℕ)

#check birkhoffAverage ℝ T f n x

/- define `A := { x | sup_n ∑_{i=0}^{n} f(T^i x) = ∞}`.
def A := { x : α | ∃ n, ∀ C : ℝ, ∑ i in Finset.range n, f (T^[i] x) > C }
/- define `A := { x | sup_n ∑_{i=0}^{n} f(T^i x) = ∞}`. -/
define `A := { x | lim_n ∑_{i=0}^{n} f(T^i x) = ∞}`.
-/
def A := { x : α | Filter.Tendsto (fun n ↦ ∑ i in Finset.range n, f (T^[i] x)) Filter.atTop Filter.atTop }

/- `A` is in `I = inv_sigma_algebra`. -/

Expand Down Expand Up @@ -66,6 +68,8 @@ then `μ(A) = 0`. -/

/- Birkhoff's theorem: Almost surely, `birkhoffAverage ℝ f g n x` converges to the conditional expectation of `f`. -/

#check birkhoffAverage ℝ T f n x

/- If `T` is ergodic, show that the invariant sigma-algebra is a.e. trivial. -/

/- Show that the conditional expectation with respect to an a.e. trivial subalgebra is a.e.
Expand Down

0 comments on commit 5ebdd5e

Please sign in to comment.