Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

API: Disallow dtypes w/o frequency when casting #23392

Merged
merged 1 commit into from
Oct 28, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v0.24.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -942,6 +942,7 @@ Removal of prior version deprecations/changes
- Removal of the previously deprecated module ``pandas.core.datetools`` (:issue:`14105`, :issue:`14094`)
- Strings passed into :meth:`DataFrame.groupby` that refer to both column and index levels will raise a ``ValueError`` (:issue:`14432`)
- :meth:`Index.repeat` and :meth:`MultiIndex.repeat` have renamed the ``n`` argument to ``repeats`` (:issue:`14645`)
- The ``Series`` constructor and ``.astype`` method will now raise a ``ValueError`` if timestamp dtypes are passed in without a frequency (e.g. ``np.datetime64``) for the ``dtype`` parameter (:issue:`15987`)
- Removal of the previously deprecated ``as_indexer`` keyword completely from ``str.match()`` (:issue:`22356`, :issue:`6581`)
- Removed the ``pandas.formats.style`` shim for :class:`pandas.io.formats.style.Styler` (:issue:`16059`)
- :func:`pandas.pnow`, :func:`pandas.match`, :func:`pandas.groupby`, :func:`pd.get_store`, ``pd.Expr``, and ``pd.Term`` have been removed (:issue:`15538`, :issue:`15940`)
Expand Down
24 changes: 11 additions & 13 deletions pandas/core/dtypes/cast.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,6 @@
from datetime import datetime, timedelta

import numpy as np
import warnings

from pandas._libs import tslib, lib, tslibs
from pandas._libs.tslibs import iNaT, OutOfBoundsDatetime, Period
Expand Down Expand Up @@ -664,6 +663,11 @@ def astype_nansafe(arr, dtype, copy=True, skipna=False):
e.g. the item sizes don't align.
skipna: bool, default False
Whether or not we should skip NaN when casting as a string-type.
Raises
------
ValueError
The dtype was a datetime /timedelta dtype, but it had no frequency.
gfyoung marked this conversation as resolved.
Show resolved Hide resolved
"""

# dispatch on extension dtype if needed
Expand Down Expand Up @@ -745,12 +749,9 @@ def astype_nansafe(arr, dtype, copy=True, skipna=False):
return astype_nansafe(to_timedelta(arr).values, dtype, copy=copy)

if dtype.name in ("datetime64", "timedelta64"):
msg = ("Passing in '{dtype}' dtype with no frequency is "
"deprecated and will raise in a future version. "
msg = ("The '{dtype}' dtype has no frequency. "
"Please pass in '{dtype}[ns]' instead.")
warnings.warn(msg.format(dtype=dtype.name),
FutureWarning, stacklevel=5)
dtype = np.dtype(dtype.name + "[ns]")
raise ValueError(msg.format(dtype=dtype.name))

if copy or is_object_dtype(arr) or is_object_dtype(dtype):
# Explicit copy, or required since NumPy can't view from / to object.
Expand Down Expand Up @@ -1019,16 +1020,14 @@ def maybe_cast_to_datetime(value, dtype, errors='raise'):

if is_datetime64 or is_datetime64tz or is_timedelta64:

# force the dtype if needed
msg = ("Passing in '{dtype}' dtype with no frequency is "
"deprecated and will raise in a future version. "
# Force the dtype if needed.
msg = ("The '{dtype}' dtype has no frequency. "
"Please pass in '{dtype}[ns]' instead.")

if is_datetime64 and not is_dtype_equal(dtype, _NS_DTYPE):
if dtype.name in ('datetime64', 'datetime64[ns]'):
if dtype.name == 'datetime64':
warnings.warn(msg.format(dtype=dtype.name),
FutureWarning, stacklevel=5)
raise ValueError(msg.format(dtype=dtype.name))
dtype = _NS_DTYPE
else:
raise TypeError("cannot convert datetimelike to "
Expand All @@ -1044,8 +1043,7 @@ def maybe_cast_to_datetime(value, dtype, errors='raise'):
elif is_timedelta64 and not is_dtype_equal(dtype, _TD_DTYPE):
if dtype.name in ('timedelta64', 'timedelta64[ns]'):
if dtype.name == 'timedelta64':
warnings.warn(msg.format(dtype=dtype.name),
FutureWarning, stacklevel=5)
raise ValueError(msg.format(dtype=dtype.name))
dtype = _TD_DTYPE
else:
raise TypeError("cannot convert timedeltalike to "
Expand Down
38 changes: 16 additions & 22 deletions pandas/tests/series/test_constructors.py
Original file line number Diff line number Diff line change
Expand Up @@ -1192,32 +1192,26 @@ def test_constructor_cast_object(self, index):
exp = Series(index).astype(object)
tm.assert_series_equal(s, exp)

def test_constructor_generic_timestamp_deprecated(self):
# see gh-15524

with tm.assert_produces_warning(FutureWarning):
dtype = np.timedelta64
s = Series([], dtype=dtype)

assert s.empty
assert s.dtype == 'm8[ns]'

with tm.assert_produces_warning(FutureWarning):
dtype = np.datetime64
s = Series([], dtype=dtype)
@pytest.mark.parametrize("dtype", [
np.datetime64,
np.timedelta64,
])
def test_constructor_generic_timestamp_no_frequency(self, dtype):
# see gh-15524, gh-15987
msg = "dtype has no frequency. Please pass in"

assert s.empty
assert s.dtype == 'M8[ns]'
with tm.assert_raises_regex(ValueError, msg):
Series([], dtype=dtype)

# These timestamps have the wrong frequencies,
# so an Exception should be raised now.
msg = "cannot convert timedeltalike"
with tm.assert_raises_regex(TypeError, msg):
Series([], dtype='m8[ps]')
@pytest.mark.parametrize("dtype,msg", [
("m8[ps]", "cannot convert timedeltalike"),
("M8[ps]", "cannot convert datetimelike"),
])
def test_constructor_generic_timestamp_bad_frequency(self, dtype, msg):
# see gh-15524, gh-15987

msg = "cannot convert datetimelike"
with tm.assert_raises_regex(TypeError, msg):
Series([], dtype='M8[ps]')
Series([], dtype=dtype)

@pytest.mark.parametrize('dtype', [None, 'uint8', 'category'])
def test_constructor_range_dtype(self, dtype):
Expand Down
47 changes: 18 additions & 29 deletions pandas/tests/series/test_dtypes.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,6 @@

import string
import sys
import warnings
from datetime import datetime, timedelta

import numpy as np
Expand All @@ -21,7 +20,7 @@
from pandas.compat import lrange, range, u


class TestSeriesDtypes():
class TestSeriesDtypes(object):

def test_dt64_series_astype_object(self):
dt64ser = Series(date_range('20130101', periods=3))
Expand Down Expand Up @@ -396,40 +395,30 @@ def test_astype_categoricaldtype_with_args(self):
with pytest.raises(TypeError):
s.astype(type_, categories=['a', 'b'], ordered=False)

def test_astype_generic_timestamp_deprecated(self):
# see gh-15524
@pytest.mark.parametrize("dtype", [
np.datetime64,
np.timedelta64,
])
def test_astype_generic_timestamp_no_frequency(self, dtype):
# see gh-15524, gh-15987
data = [1]
s = Series(data)

with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
s = Series(data)
dtype = np.datetime64
result = s.astype(dtype)
expected = Series(data, dtype=dtype)
tm.assert_series_equal(result, expected)

with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
s = Series(data)
dtype = np.timedelta64
result = s.astype(dtype)
expected = Series(data, dtype=dtype)
tm.assert_series_equal(result, expected)
msg = "dtype has no frequency. Please pass in"
with tm.assert_raises_regex(ValueError, msg):
s.astype(dtype)

@pytest.mark.parametrize("dtype", np.typecodes['All'])
def test_astype_empty_constructor_equality(self, dtype):
# see gh-15524

if dtype not in ('S', 'V'): # poor support (if any) currently
with warnings.catch_warnings(record=True):
if dtype in ('M', 'm'):
# Generic timestamp dtypes ('M' and 'm') are deprecated,
# but we test that already in series/test_constructors.py
warnings.simplefilter("ignore", FutureWarning)

init_empty = Series([], dtype=dtype)
as_type_empty = Series([]).astype(dtype)
tm.assert_series_equal(init_empty, as_type_empty)
if dtype not in (
"S", "V", # poor support (if any) currently
"M", "m" # Generic timestamps raise a ValueError. Already tested.
):
init_empty = Series([], dtype=dtype)
as_type_empty = Series([]).astype(dtype)
tm.assert_series_equal(init_empty, as_type_empty)

def test_complex(self):
# see gh-4819: complex access for ndarray compat
Expand Down