Skip to content

[KDD 2023] Multi-Grained Multimodal Interaction Network for Entity Linking

Notifications You must be signed in to change notification settings

pengfei-luo/MIMIC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-Grained Multimodal Interaction Network for Entity Linking

arXiv Digital Library Dataset Video

This repository is the official implementation for the paper titled "Multi-Grained Multimodal Interaction Network for Entity Linking".

mimic

News

  • [2023.09.17] Updating the method of accessing low-resource data and considerations for reproduce the results.
  • [2023.09.16] The detailed values of the experimental results have been updated. Please refer here.

Usage

Step 1: Set up the environment

We recommend using Conda to manage virtual environments, and we use Python version 3.8.12.

conda create -n mimic python==3.8.12
conda activate mimic

Please install the specified versions of Python libraries according to the requirements.txt file.

Note that the versions of PyTorch, Transformers, and PyTorch Lightning may have a slight impact on the results. To fully reproduce the results of the paper, we recommend installing the specified versions.

Step 2: Download the data

You may download WikiMEL and RichpediaMEL from https://github.com/seukgcode/MELBench and WikiDiverse from https://github.com/wangxw5/wikiDiverse.

Or download our cleaned data WikiMEL, RichpediaMEL, WikiDiverse (Password: kdd2023).

Step 3: Modify the data path

Please modify the configuration files under the "config" directory (including the YAML files for all 3 datasets) and replace YOUR_PATH in the data field of each configuration file with the path to your corresponding dataset.

NOTE: Due to the uploaded training files of RichpediaMEL, mention images are stored in the folder mention_images. You need to modify the mention_img_folder in the richpediamel.yaml config file or rename the mention_images folder to mention_image. (Thank Zhiwei Hu for bringing up this issue)

Step 4: Start the training

Now you can execute bash run.sh <gpu_id> <dataset_name> to begin the training.

bash run.sh 0 wikimel       # for WikiMEL
bash run.sh 0 richpediamel  # for RichpediaMEL
bash run.sh 0 wikidiverse   # for WikiDiverse

Code Structure

The code is organized as follows:

├── codes
│   ├── main.py
│   ├── model
│   │   ├── lightning_mimic.py
│   │   └── modeling_mimic.py
│   └── utils
│       ├── dataset.py
│       └── functions.py
├── config
│   ├── richpediamel.yaml
│   ├── wikidiverse.yaml
│   └── wikimel.yaml
├── readme.md
├── requirements.txt
└── run.sh

Results

Main Result

Model WikiMEL RichpediaMEL WikiDiverse
H@1↑ H@3↑ H@5↑ MRR↑ MR↓ H@1↑ H@3↑ H@5↑ MRR↑ MR↓ H@1↑ H@3↑ H@5↑ MRR↑ MR↓
BLINK 74.66 86.63 90.57 81.72 51.48 58.47 81.51 88.09 71.39 178.57 57.14 78.04 85.32 69.15 332.03
BERT 74.82 86.79 90.47 81.78 51.23 59.55 81.12 87.16 71.67 278.08 55.77 75.73 83.11 67.38 373.96
RoBERTa 73.75 85.85 89.80 80.86 31.02 61.34 81.56 87.15 72.80 218.16 59.46 78.54 85.08 70.52 405.22
DZMNED 78.82 90.02 92.62 84.97 152.58 68.16 82.94 87.33 76.63 313.85 56.90 75.34 81.41 67.59 563.26
JMEL 64.65 79.99 84.34 73.39 285.14 48.82 66.77 73.99 60.06 470.90 37.38 54.23 61.00 48.19 996.63
VELML 76.62 88.75 91.96 83.42 102.72 67.71 84.57 89.17 77.19 332.85 54.56 74.43 81.15 66.13 463.25
GHMFC 76.55 88.40 92.01 83.36 54.75 72.92 86.85 90.60 80.76 214.64 60.27 79.40 84.74 70.99 628.87
CLIP 83.23 92.10 94.51 88.23 17.60 67.78 85.22 90.04 77.57 107.16 61.21 79.63 85.18 71.69 313.35
ViLT 72.64 84.51 87.86 79.46 220.76 45.85 62.96 69.80 56.63 675.93 34.39 51.07 57.83 45.22 2421.49
ALBEF 78.64 88.93 91.75 84.56 47.95 65.17 82.84 88.28 75.29 122.30 60.59 75.59 81.30 69.93 291.17
METER 72.46 84.41 88.17 79.49 111.90 63.96 82.24 87.08 74.15 376.42 53.14 70.93 77.59 63.71 944.48
MIMIC 87.98 95.07 96.37 91.82 11.02 81.02 91.77 94.38 86.95 55.11 63.51 81.04 86.43 73.44 227.08

Low-resource Setting Result

To access low-resource training data, please refer here.

10% RichpediaMEL

Model H@1 H@3 H@5 H@10 MRR
DZMNED 22.57 34.95 41.33 50.48 31.79
JMEL 16.70 27.68 33.63 41.55 25.01
VELML 27.15 38.60 43.99 51.99 35.52
GHMFC 68.00 83.38 87.73 91.97 76.69
ViLT 11.73 18.59 22.07 27.32 17.05
METER 60.89 79.23 84.78 89.42 71.40
CLIP 62.66 79.14 85.06 90.68 72.51
ALBEF 63.19 79.31 84.25 89.42 72.51
MIMIC 64.49 82.03 87.59 92.45 74.62

20% RichpediaMEL

Model H@1 H@3 H@5 H@10 MRR
DZMNED 36.38 52.25 58.28 67.46 47.01
JMEL 28.92 43.35 50.59 61.54 39.38
VELML 48.85 64.91 71.76 79.42 59.24
GHMFC 72.57 86.69 90.15 93.77 80.42
ViLT 30.24 42.39 48.40 55.73 38.81
METER 61.51 79.56 84.48 89.50 71.82
CLIP 64.32 79.59 85.54 90.96 73.72
ALBEF 64.21 79.47 85.32 89.92 73.02
MIMIC 75.60 88.63 91.72 94.67 82.73

10% WikiDiverse

Model H@1 H@3 H@5 H@10 MRR
DZMNED 11.45 22.52 29.50 37.15 19.99
JMEL 19.97 32.19 37.58 44.37 28.26
VELML 30.51 46.20 52.36 59.62 40.70
ViLT 13.19 21.27 26.37 32.68 19.57
METER 40.42 61.31 70.26 78.78 53.53
CLIP 59.87 76.52 81.57 85.95 69.49
ALBEF 51.83 69.20 74.64 81.57 62.26
GHMFC 48.08 66.31 74.25 81.91 59.56
MIMIC 60.54 76.18 81.33 86.14 69.70

20% WikiDiverse

Model H@1 H@3 H@5 H@10 MRR
DZMNED 28.73 47.35 56.69 63.96 40.97
JMEL 29.26 44.23 49.90 57.22 39.05
VELML 43.65 61.36 67.66 74.88 54.76
ViLT 20.93 32.92 38.93 47.26 29.48
METER 40.23 61.16 70.45 80.56 53.46
CLIP 59.96 77.05 82.24 86.86 69.95
ALBEF 56.40 73.87 78.97 85.08 66.56
GHMFC 51.73 71.85 78.54 84.50 63.46
MIMIC 61.01 77.67 83.35 88.88 70.52

Citation

If you find this project useful in your research, please cite the following paper:

@inproceedings{luo2023multi,
    author = {Luo, Pengfei and Xu, Tong and Wu, Shiwei and Zhu, Chen and Xu, Linli and Chen, Enhong},
    title = {Multi-Grained Multimodal Interaction Network for Entity Linking},
    year = {2023},
    publisher = {Association for Computing Machinery},
    booktitle = {Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
    pages = {1583–1594},
}

Contact Information

If you have any questions, please contact pfluo@mail.ustc.edu.cn.

About

[KDD 2023] Multi-Grained Multimodal Interaction Network for Entity Linking

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published