Skip to content

Commit

Permalink
Updated transforms docs (#2820)
Browse files Browse the repository at this point in the history
  • Loading branch information
vfdev-5 authored Oct 16, 2020
1 parent adfc15c commit a055980
Show file tree
Hide file tree
Showing 3 changed files with 51 additions and 25 deletions.
52 changes: 39 additions & 13 deletions docs/source/transforms.rst
Original file line number Diff line number Diff line change
Expand Up @@ -57,77 +57,103 @@ Compositions of transforms

.. autoclass:: Compose

Transforms on PIL Image
-----------------------
Transforms on PIL Image and torch.\*Tensor
------------------------------------------

.. autoclass:: CenterCrop
:members:

.. autoclass:: ColorJitter
:members:

.. autoclass:: FiveCrop
:members:

.. autoclass:: Grayscale
:members:

.. autoclass:: Pad
:members:

.. autoclass:: RandomAffine
:members:

.. autoclass:: RandomApply

.. autoclass:: RandomChoice

.. autoclass:: RandomCrop
:members:

.. autoclass:: RandomGrayscale
:members:

.. autoclass:: RandomHorizontalFlip

.. autoclass:: RandomOrder
:members:

.. autoclass:: RandomPerspective
:members:

.. autoclass:: RandomResizedCrop
:members:

.. autoclass:: RandomRotation
:members:

.. autoclass:: RandomSizedCrop
:members:

.. autoclass:: RandomVerticalFlip
:members:

.. autoclass:: Resize
:members:

.. autoclass:: Scale
:members:

.. autoclass:: TenCrop
:members:

.. autoclass:: GaussianBlur
:members:

Transforms on torch.\*Tensor
Transforms on PIL Image only
----------------------------

.. autoclass:: RandomChoice

.. autoclass:: RandomOrder


Transforms on torch.\*Tensor only
---------------------------------

.. autoclass:: LinearTransformation
:members:

.. autoclass:: Normalize
:members: __call__
:special-members:
:members:

.. autoclass:: RandomErasing
:members:

.. autoclass:: ConvertImageDtype


Conversion Transforms
---------------------

.. autoclass:: ToPILImage
:members: __call__
:special-members:
:members:

.. autoclass:: ToTensor
:members: __call__
:special-members:
:members:


Generic Transforms
------------------

.. autoclass:: Lambda
:members:


Functional Transforms
Expand Down
2 changes: 1 addition & 1 deletion torchvision/transforms/functional.py
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,7 @@ def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -
dtype (torch.dtype): Desired data type of the output
Returns:
(torch.Tensor): Converted image
Tensor: Converted image
.. note::
Expand Down
22 changes: 11 additions & 11 deletions torchvision/transforms/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -149,7 +149,7 @@ def __init__(self, dtype: torch.dtype) -> None:
super().__init__()
self.dtype = dtype

def forward(self, image: torch.Tensor) -> torch.Tensor:
def forward(self, image):
return F.convert_image_dtype(image, self.dtype)


Expand Down Expand Up @@ -218,7 +218,7 @@ def __init__(self, mean, std, inplace=False):
def forward(self, tensor: Tensor) -> Tensor:
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
tensor (Tensor): Tensor image to be normalized.
Returns:
Tensor: Normalized Tensor image.
Expand Down Expand Up @@ -972,7 +972,7 @@ def __init__(self, transformation_matrix, mean_vector):
def forward(self, tensor: Tensor) -> Tensor:
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be whitened.
tensor (Tensor): Tensor image to be whitened.
Returns:
Tensor: Transformed image.
Expand Down Expand Up @@ -1342,7 +1342,7 @@ def __init__(self, num_output_channels=1):
super().__init__()
self.num_output_channels = num_output_channels

def forward(self, img: Tensor) -> Tensor:
def forward(self, img):
"""
Args:
img (PIL Image or Tensor): Image to be converted to grayscale.
Expand Down Expand Up @@ -1377,7 +1377,7 @@ def __init__(self, p=0.1):
super().__init__()
self.p = p

def forward(self, img: Tensor) -> Tensor:
def forward(self, img):
"""
Args:
img (PIL Image or Tensor): Image to be converted to grayscale.
Expand Down Expand Up @@ -1411,7 +1411,7 @@ class RandomErasing(torch.nn.Module):
Returns:
Erased Image.
# Examples:
Example:
>>> transform = transforms.Compose([
>>> transforms.RandomHorizontalFlip(),
>>> transforms.ToTensor(),
Expand Down Expand Up @@ -1450,7 +1450,7 @@ def get_params(
"""Get parameters for ``erase`` for a random erasing.
Args:
img (Tensor): Tensor image of size (C, H, W) to be erased.
img (Tensor): Tensor image to be erased.
scale (tuple or list): range of proportion of erased area against input image.
ratio (tuple or list): range of aspect ratio of erased area.
value (list, optional): erasing value. If None, it is interpreted as "random"
Expand Down Expand Up @@ -1487,7 +1487,7 @@ def get_params(
def forward(self, img):
"""
Args:
img (Tensor): Tensor image of size (C, H, W) to be erased.
img (Tensor): Tensor image to be erased.
Returns:
img (Tensor): Erased Tensor image.
Expand Down Expand Up @@ -1518,7 +1518,7 @@ def forward(self, img):
class GaussianBlur(torch.nn.Module):
"""Blurs image with randomly chosen Gaussian blur.
The image can be a PIL Image or a Tensor, in which case it is expected
to have [..., 3, H, W] shape, where ... means an arbitrary number of leading
to have [..., C, H, W] shape, where ... means an arbitrary number of leading
dimensions
Args:
Expand Down Expand Up @@ -1554,7 +1554,7 @@ def __init__(self, kernel_size, sigma=(0.1, 2.0)):

@staticmethod
def get_params(sigma_min: float, sigma_max: float) -> float:
"""Choose sigma for ``gaussian_blur`` for random gaussian blurring.
"""Choose sigma for random gaussian blurring.
Args:
sigma_min (float): Minimum standard deviation that can be chosen for blurring kernel.
Expand All @@ -1568,7 +1568,7 @@ def get_params(sigma_min: float, sigma_max: float) -> float:
def forward(self, img: Tensor) -> Tensor:
"""
Args:
img (PIL Image or Tensor): image of size (C, H, W) to be blurred.
img (PIL Image or Tensor): image to be blurred.
Returns:
PIL Image or Tensor: Gaussian blurred image
Expand Down

0 comments on commit a055980

Please sign in to comment.