forked from sgl-project/sglang
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Performance] Support both xgrammar and outlines for constrained deco…
…ding (sgl-project#1752)
- Loading branch information
1 parent
2e588b4
commit 080e618
Showing
7 changed files
with
325 additions
and
77 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
""" | ||
Copyright 2023-2024 SGLang Team | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
""" | ||
|
||
"""Cache for the compressed finite state machine.""" | ||
|
||
from typing import Tuple | ||
|
||
from transformers import AutoTokenizer | ||
|
||
from sglang.srt.constrained import ( | ||
GrammarMatcher, | ||
GrammarMatcherInitContext, | ||
GrammarMatcherInitContextCache, | ||
) | ||
|
||
MAX_ROLLBACK_TOKENS = 10 | ||
|
||
|
||
class BNFCache: | ||
grammar_cache: GrammarMatcherInitContextCache | ||
|
||
def __init__( | ||
self, | ||
tokenizer_path, | ||
tokenizer_args_dict, | ||
skip_tokenizer_init=False, | ||
whitespace_patterns=None, | ||
): | ||
# TODO(dark): how to deal with whitespace_patterns and skip_tokenizer_init | ||
if skip_tokenizer_init: | ||
return | ||
|
||
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, **tokenizer_args_dict) | ||
self.grammar_cache = GrammarMatcherInitContextCache( | ||
tokenizer_or_vocab=tokenizer | ||
) | ||
|
||
def get_context(self, key: Tuple[str, str]) -> GrammarMatcherInitContext: | ||
key_type, key_string = key | ||
if key_type == "json": | ||
return self.grammar_cache.get_init_context_for_json_schema(key_string) | ||
elif key_type == "regex": | ||
raise ValueError(f"regex hasn't been supported by xgrammar yet") | ||
else: | ||
raise ValueError(f"Invalid key_type: {key_type}") | ||
|
||
def query(self, key: Tuple[str, str], vocab_size: int) -> GrammarMatcher: | ||
ctx = self.get_context(key) | ||
return GrammarMatcher( | ||
ctx, max_rollback_tokens=MAX_ROLLBACK_TOKENS, mask_vocab_size=vocab_size | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
""" | ||
Copyright 2023-2024 SGLang Team | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
""" | ||
|
||
"""Cache for the compressed finite state machine.""" | ||
import logging | ||
from typing import List, Optional, Tuple, Union | ||
|
||
import torch | ||
|
||
from sglang.srt.constrained import GrammarMatcher, RegexGuide | ||
from sglang.srt.constrained.bnf_cache import BNFCache | ||
from sglang.srt.constrained.fsm_cache import FSMCache | ||
from sglang.srt.constrained.jump_forward import JumpForwardCache, JumpForwardMap | ||
|
||
# from sglang.srt.managers.schedule_batch import Req | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
INIT_INCREMENTAL_DETOKENIZATION_OFFSET = 5 | ||
|
||
|
||
class XGrammarJump: | ||
pass | ||
|
||
|
||
class JumpHelper: | ||
data: Union[List, str] | ||
state: int | ||
suffix_ids: List[int] | ||
|
||
def __init__( | ||
self, data: Union[List, str] = "", state: int = -1, suffix_ids=[] | ||
) -> None: | ||
self.data = data | ||
self.state = state | ||
self.suffix_ids = suffix_ids | ||
|
||
def can_jump(self): | ||
return len(self.data) > 0 | ||
|
||
|
||
class Grammar: | ||
grammar: Union[GrammarMatcher, Tuple[RegexGuide, int]] | ||
jump_map: Union[XGrammarJump, JumpForwardMap, None] | ||
|
||
def __init__( | ||
self, | ||
grammar: Union[GrammarMatcher, Tuple[RegexGuide, int]], | ||
jump_map: Union[XGrammarJump, JumpForwardMap, None], | ||
) -> None: | ||
self.grammar = grammar | ||
self.jump_map = jump_map | ||
|
||
def accept_token(self, token: int): | ||
if isinstance(self.grammar, GrammarMatcher): | ||
assert self.grammar.accept_token(token) | ||
else: | ||
guide, state = self.grammar | ||
self.grammar = guide, guide.get_next_state(state, token) | ||
|
||
def try_jump(self, tokenizer) -> JumpHelper: | ||
if isinstance(self.jump_map, XGrammarJump): | ||
assert isinstance(self.grammar, GrammarMatcher) | ||
return JumpHelper(self.grammar.find_jump_forward_string()) | ||
elif isinstance(self.jump_map, JumpForwardMap): | ||
assert isinstance(self.grammar, Tuple) | ||
|
||
_, state = self.grammar | ||
jump_forward_bytes = self.jump_map.jump_forward_byte(state) | ||
if jump_forward_bytes is None or len(jump_forward_bytes) == 0: | ||
return JumpHelper() # can't jump | ||
|
||
# preprocess the jump forward string | ||
suffix_bytes = [] | ||
continuation_range = range(0x80, 0xC0) | ||
cur_state = state | ||
while ( | ||
len(jump_forward_bytes) | ||
and jump_forward_bytes[0][0] in continuation_range | ||
): | ||
# continuation bytes | ||
byte_edge = jump_forward_bytes.pop(0) | ||
suffix_bytes.append(byte_edge[0]) | ||
cur_state = byte_edge[1] | ||
|
||
suffix_tokens = [f"<0x{hex(b)[2:].upper()}>" for b in suffix_bytes] | ||
suffix_ids = tokenizer.convert_tokens_to_ids(suffix_tokens) | ||
return JumpHelper(suffix_ids, cur_state, suffix_bytes) | ||
else: | ||
return JumpHelper() # can't jump | ||
|
||
def jump_forward_str_state(self, helper: JumpHelper) -> Tuple[str, int]: | ||
if isinstance(helper.data, str): | ||
return helper.data, -1 | ||
else: | ||
assert isinstance(self.jump_map, JumpForwardMap) | ||
return self.jump_map.jump_forward_symbol(helper.state) | ||
|
||
def jump_and_retokenize( | ||
self, old_output_ids: List[int], new_output_ids: List[int], next_state: int | ||
): | ||
if isinstance(self.grammar, GrammarMatcher): | ||
k = 0 | ||
for i, old_id in enumerate(old_output_ids): | ||
if old_id == new_output_ids[i]: | ||
k = i + 1 | ||
else: | ||
break | ||
|
||
# rollback to the last token that is the same | ||
if k < len(old_output_ids): | ||
self.grammar.rollback(len(old_output_ids) - k) | ||
|
||
for i in range(k, len(new_output_ids)): | ||
assert self.grammar.accept_token(new_output_ids[i]) | ||
else: | ||
self.grammar = self.grammar[0], next_state | ||
|
||
def fill_vocab_mask(self, vocab_mask: torch.Tensor, vocab_size: int): | ||
if isinstance(self.grammar, GrammarMatcher): | ||
# Note that this bitmask is a bitset, not bool | ||
bitmask = self.grammar.find_next_token_bitmask() | ||
# Mask the tokens that are not allowed | ||
vocab_mask[ | ||
self.grammar.get_rejected_tokens_from_bitmask(bitmask, vocab_size) | ||
] = 1 | ||
else: | ||
guide, state = self.grammar | ||
vocab_mask.fill_(1) | ||
vocab_mask[guide.get_next_instruction(state).tokens] = 0 | ||
|
||
|
||
class GrammarCache: | ||
grammar_cache: Union[BNFCache, FSMCache] | ||
jump_cache: Union[XGrammarJump, JumpForwardCache, None] | ||
|
||
def __init__( | ||
self, | ||
tokenizer_path, | ||
tokenizer_args_dict, | ||
skip_tokenizer_init=False, | ||
whitespace_patterns=None, | ||
backend=None, | ||
allow_jump=False, | ||
): | ||
if backend == "xgrammar": | ||
self.grammar_cache = BNFCache( | ||
tokenizer_path=tokenizer_path, | ||
tokenizer_args_dict=tokenizer_args_dict, | ||
skip_tokenizer_init=skip_tokenizer_init, | ||
whitespace_patterns=whitespace_patterns, | ||
) | ||
self.jump_cache = XGrammarJump() if allow_jump else None | ||
else: | ||
assert backend == "outlines" | ||
self.grammar_cache = FSMCache( | ||
tokenizer_path=tokenizer_path, | ||
tokenizer_args_dict=tokenizer_args_dict, | ||
skip_tokenizer_init=skip_tokenizer_init, | ||
constrained_json_whitespace_pattern=whitespace_patterns, | ||
enable=True, | ||
) | ||
self.jump_cache = JumpForwardCache() if allow_jump else None | ||
|
||
def query(self, key: Tuple[str, str], vocab_size: int) -> Grammar: | ||
if isinstance(self.grammar_cache, BNFCache): | ||
assert not isinstance(self.jump_cache, JumpForwardCache) | ||
return Grammar(self.grammar_cache.query(key, vocab_size), self.jump_cache) | ||
else: | ||
jump_map = None | ||
guide, regex = self.grammar_cache.query(key) | ||
if isinstance(self.jump_cache, JumpForwardCache): | ||
jump_map = self.jump_cache.query(regex) | ||
return Grammar((guide, 0), jump_map) | ||
|
||
def reset(self): | ||
if isinstance(self.grammar_cache, FSMCache): | ||
self.grammar_cache.reset() | ||
if isinstance(self.jump_cache, JumpForwardCache): | ||
self.jump_cache.reset() |
Oops, something went wrong.