-
Notifications
You must be signed in to change notification settings - Fork 2
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Call Digital Growth Charts API asynchronously #418
Merged
Merged
Changes from all commits
Commits
Show all changes
8 commits
Select commit
Hold shift + click to select a range
25a1945
wip make dgc calls async
mbarton 214153e
More wip async dgc calls
mbarton e6068ab
Handle dGC fields by overriding save
mbarton f92f993
Handle missing weight, height and dates
mbarton 9be2caf
Merge branch 'live' into mbarton/async-dgc
mbarton e9d25a6
Stub out dGC calls in test_visit_form and test_csv_upload
mbarton 936e7d0
Basic unit tests
mbarton 2a45ee8
Errors should come back per call
mbarton File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,132 @@ | ||
from dataclasses import dataclass | ||
from decimal import Decimal | ||
from datetime import date | ||
import logging | ||
|
||
import asyncio | ||
from asgiref.sync import async_to_sync | ||
|
||
from django.core.exceptions import ValidationError | ||
from httpx import HTTPError, AsyncClient | ||
|
||
from ..general_functions.dgc_centile_calculations import ( | ||
calculate_centiles_z_scores, | ||
calculate_bmi, | ||
) | ||
|
||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
@dataclass | ||
class CentileAndSDS: | ||
centile: Decimal | ||
sds: Decimal | ||
|
||
|
||
@dataclass | ||
class VisitExternalValidationResult: | ||
height_result: CentileAndSDS | ValidationError | None | ||
weight_result: CentileAndSDS | ValidationError | None | ||
bmi: Decimal | None | ||
bmi_result: CentileAndSDS | ValidationError | None | ||
|
||
|
||
async def _calculate_centiles_z_scores( | ||
birth_date: date, observation_date: date, sex: int, measurement_method: str, observation_value: Decimal | None, async_client: AsyncClient | ||
) -> CentileAndSDS | None: | ||
if observation_value is None: | ||
logger.warning( | ||
f"Cannot calculate centiles and z-scores for {measurement_method} as it is missing" | ||
) | ||
return None | ||
|
||
try: | ||
centile, sds = await calculate_centiles_z_scores( | ||
birth_date=birth_date, | ||
observation_date=observation_date, | ||
measurement_method=measurement_method, | ||
observation_value=observation_value, | ||
sex=sex, | ||
async_client=async_client, | ||
) | ||
|
||
return CentileAndSDS(centile, sds) | ||
except HTTPError as err: | ||
logger.warning(f"Error calculating centiles and z-scores for {measurement_method} {err}") | ||
|
||
# TODO: test questionnaire missing height, weight and observation_date. Do we get blank values for them? | ||
|
||
async def validate_visit_async( | ||
birth_date: date, | ||
observation_date: date | None, | ||
sex: int | None, | ||
height: Decimal | None, | ||
weight: Decimal | None, | ||
async_client: AsyncClient | ||
) -> VisitExternalValidationResult: | ||
ret = VisitExternalValidationResult(None, None, None, None) | ||
|
||
if not observation_date: | ||
logger.warning("Observation date is not specified. Cannot calculate centiles and z-scores.") | ||
return ret | ||
|
||
if sex == 1: | ||
sex = "male" | ||
elif sex == 2: | ||
sex = "female" | ||
else: | ||
logger.warning( | ||
"Sex is not known or not specified. Cannot calculate centiles and z-scores." | ||
) | ||
return ret | ||
|
||
if height is not None and weight is not None: | ||
bmi = round(calculate_bmi(height, weight), 1) | ||
ret.bmi = bmi | ||
else: | ||
logger.warning( | ||
"Missing height or weight. Cannot calculate centiles and z-scores." | ||
) | ||
|
||
validate_height_task = _calculate_centiles_z_scores(birth_date, observation_date, sex, "height", height, async_client) | ||
validate_weight_task = _calculate_centiles_z_scores(birth_date, observation_date, sex, "weight", weight, async_client) | ||
validate_bmi_task = _calculate_centiles_z_scores(birth_date, observation_date, sex, "bmi", bmi, async_client) | ||
|
||
# This is the Python equivalent of Promise.allSettled | ||
# Run all the lookups in parallel but retain exceptions per job rather than returning the first one | ||
[height_result, weight_result, bmi_result] = ( | ||
await asyncio.gather( | ||
validate_height_task, | ||
validate_weight_task, | ||
validate_bmi_task, | ||
return_exceptions=True, | ||
) | ||
) | ||
|
||
for [result, result_field] in [ | ||
[height_result, "height_result"], | ||
[weight_result, "weight_result"], | ||
[bmi_result, "bmi_result"] | ||
]: | ||
if isinstance(result, Exception) and not type(result) is ValidationError: | ||
raise result | ||
|
||
setattr(ret, result_field, result) | ||
|
||
return ret | ||
|
||
|
||
def validate_visit_sync( | ||
birth_date: date, | ||
observation_date: date | None, | ||
sex: int | None, | ||
height: Decimal | None, | ||
weight: Decimal | None | ||
) -> VisitExternalValidationResult: | ||
async def wrapper(): | ||
async with AsyncClient() as client: | ||
ret = await validate_visit_async(birth_date, observation_date, sex, height, weight, client) | ||
return ret | ||
|
||
return async_to_sync(wrapper)() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -4,10 +4,7 @@ | |
from ...constants.styles import * | ||
from ...constants import * | ||
from ..general_functions.validate_dates import validate_date | ||
from ..general_functions.dgc_centile_calculations import ( | ||
calculate_centiles_z_scores, | ||
calculate_bmi, | ||
) | ||
from ..forms.external_visit_validators import validate_visit_sync | ||
from ..models import Visit | ||
|
||
|
||
|
@@ -61,15 +58,7 @@ class Meta: | |
"hospital_discharge_date", | ||
"hospital_admission_reason", | ||
"dka_additional_therapies", | ||
"hospital_admission_other", | ||
# calculated fields | ||
"height_centile", | ||
"height_sds", | ||
"weight_centile", | ||
"weight_sds", | ||
"bmi", | ||
"bmi_centile", | ||
"bmi_sds", | ||
"hospital_admission_other" | ||
] | ||
|
||
widgets = { | ||
|
@@ -112,31 +101,9 @@ class Meta: | |
"hospital_discharge_date": DateInput(), | ||
"hospital_admission_reason": forms.Select(), | ||
"dka_additional_therapies": forms.Select(), | ||
"hospital_admission_other": forms.TextInput(attrs={"class": TEXT_INPUT}), | ||
# calculated fields as hidden inputs | ||
"height_centile": forms.HiddenInput(), | ||
"height_sds": forms.HiddenInput(), | ||
"weight_centile": forms.HiddenInput(), | ||
"weight_sds": forms.HiddenInput(), | ||
"bmi": forms.HiddenInput(), | ||
"bmi_centile": forms.HiddenInput(), | ||
"bmi_sds": forms.HiddenInput(), | ||
"hospital_admission_other": forms.TextInput(attrs={"class": TEXT_INPUT}) | ||
} | ||
|
||
height_centile = forms.DecimalField(widget=forms.HiddenInput(), required=False) | ||
height_sds = forms.DecimalField( | ||
widget=forms.HiddenInput(), required=False, decimal_places=1 | ||
) | ||
weight_centile = forms.DecimalField(widget=forms.HiddenInput(), required=False) | ||
weight_sds = forms.DecimalField( | ||
widget=forms.HiddenInput(), required=False, decimal_places=1 | ||
) | ||
bmi = forms.DecimalField(widget=forms.HiddenInput(), required=False) | ||
bmi_centile = forms.DecimalField( | ||
widget=forms.HiddenInput(), required=False, decimal_places=1 | ||
) | ||
bmi_sds = forms.DecimalField(widget=forms.HiddenInput(), required=False) | ||
|
||
categories = [ | ||
"Measurements", | ||
"HBA1c", | ||
|
@@ -472,6 +439,7 @@ def clean_total_cholesterol(self): | |
|
||
def clean_visit_date(self): | ||
data = self.cleaned_data["visit_date"] | ||
|
||
valid, error = validate_date( | ||
date_under_examination_field_name="visit_date", | ||
date_under_examination_label_name="Visit/Appointment Date", | ||
|
@@ -740,114 +708,53 @@ def clean_hospital_discharge_date(self): | |
|
||
return self.cleaned_data["hospital_discharge_date"] | ||
|
||
def handle_async_validation_errors(self): | ||
# These are calculated fields but we handle them in the form because we want to add validation errors. | ||
# Conceptually we both "clean" weight and height and derive new fields from them. The actual data is | ||
# saved in .save() below - this is just for the validation errors. | ||
|
||
for [result_field, fields_to_attach_errors] in [ | ||
["height_result", ["height"]], | ||
["weight_result", ["weight"]], | ||
["bmi_result", ["height", "weight"]] | ||
]: | ||
result = getattr(self.async_validation_results, result_field) | ||
|
||
if result and type(result) is ValidationError: | ||
for field in fields_to_attach_errors: | ||
self.add_error(field, result) | ||
|
||
def clean(self): | ||
cleaned_data = super().clean() | ||
|
||
# prevent calculated fields from being saved as empty strings | ||
if cleaned_data["height_centile"] == "": | ||
cleaned_data["height_centile"] = None | ||
if cleaned_data["height_sds"] == "": | ||
cleaned_data["height_sds"] = None | ||
if cleaned_data["weight_centile"] == "": | ||
cleaned_data["weight_centile"] = None | ||
if cleaned_data["weight_sds"] == "": | ||
cleaned_data["weight_sds"] = None | ||
if cleaned_data["bmi"] == "": | ||
cleaned_data["bmi"] = None | ||
if cleaned_data["bmi_centile"] == "": | ||
cleaned_data["bmi_centile"] = None | ||
if cleaned_data["bmi_sds"] == "": | ||
cleaned_data["bmi_sds"] = None | ||
|
||
def round_to_one_decimal_place(value): | ||
return Decimal(value).quantize( | ||
Decimal("0.1"), rounding=ROUND_HALF_UP | ||
) # round to 1 decimal place: although the rounding is done in the clean methods for height and weight, this is a final check | ||
|
||
# calculate centile and SDS for measurements if present | ||
basic_params = all( | ||
param is not None | ||
for param in [ | ||
self.patient.date_of_birth, | ||
cleaned_data["height_weight_observation_date"], | ||
self.patient.sex, | ||
] | ||
) # check if all required parameters are present. Observation date has already been cleaned and validated at this point | ||
if "height" in cleaned_data: | ||
height = cleaned_data["height"] | ||
else: | ||
height = None | ||
if "weight" in cleaned_data: | ||
weight = cleaned_data["weight"] | ||
else: | ||
weight = None | ||
birth_date = self.patient.date_of_birth | ||
observation_date = cleaned_data["height_weight_observation_date"] | ||
sex = self.patient.sex | ||
|
||
observation_date = cleaned_data.get("height_weight_observation_date") | ||
|
||
height = cleaned_data.get("height") | ||
if height is not None: | ||
cleaned_data["height"] = round_to_one_decimal_place(height) | ||
cleaned_data["height"] = height = round_to_one_decimal_place(height) | ||
|
||
weight = cleaned_data.get("weight") | ||
if weight is not None: | ||
cleaned_data["weight"] = round_to_one_decimal_place(weight) | ||
|
||
if basic_params and height is not None: | ||
# cleaned_data["height"] = round_to_one_decimal_place(height) | ||
try: | ||
centile, sds = calculate_centiles_z_scores( | ||
birth_date=birth_date, | ||
observation_date=observation_date, | ||
measurement_method="height", | ||
observation_value=round_to_one_decimal_place(height), | ||
sex=sex, | ||
) | ||
cleaned_data["height_centile"] = round_to_one_decimal_place(centile) | ||
cleaned_data["height_sds"] = round_to_one_decimal_place(sds) | ||
except Exception as e: | ||
cleaned_data["height_centile"] = None | ||
cleaned_data["height_sds"] = None | ||
# we are not raising a validation error here as sds and centile are not required fields | ||
pass | ||
if basic_params and weight is not None: | ||
# cleaned_data["weight"] = round_to_one_decimal_place(weight) | ||
try: | ||
centile, sds = calculate_centiles_z_scores( | ||
birth_date=birth_date, | ||
observation_date=observation_date, | ||
measurement_method="weight", | ||
observation_value=round_to_one_decimal_place(weight), | ||
sex=sex, | ||
) | ||
cleaned_data["weight_centile"] = round_to_one_decimal_place(centile) | ||
cleaned_data["weight_sds"] = round_to_one_decimal_place(sds) | ||
except Exception as e: | ||
cleaned_data["weight_centile"] = None | ||
cleaned_data["weight_sds"] = None | ||
# we are not raising a validation error here as sds and centile are not required fields | ||
pass | ||
# calculate BMI, BMI centile and BMI SDS, if height and weight are present | ||
if basic_params and height is not None and weight is not None: | ||
cleaned_data["bmi"] = calculate_bmi(height, weight) | ||
if ( | ||
cleaned_data["bmi"] is None | ||
): # the BMI calculation returns None if BMI is > 99 | ||
cleaned_data["bmi_centile"] = None | ||
cleaned_data["bmi_sds"] = None | ||
else: | ||
try: | ||
centile, sds = calculate_centiles_z_scores( | ||
birth_date=birth_date, | ||
observation_date=observation_date, | ||
measurement_method="bmi", | ||
observation_value=round(cleaned_data["bmi"], 1), | ||
sex=sex, | ||
) | ||
cleaned_data["bmi_centile"] = round_to_one_decimal_place(centile) | ||
cleaned_data["bmi_sds"] = round_to_one_decimal_place(sds) | ||
except Exception as e: | ||
cleaned_data["bmi_centile"] = None | ||
cleaned_data["bmi_sds"] = None | ||
# we are not raising a validation error here as sds and centile are not required fields | ||
pass | ||
cleaned_data["weight"] = weight = round_to_one_decimal_place(weight) | ||
|
||
if not getattr(self, "async_validation_results", None): | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This is the same trick we already use for the patient form, allows us to run things asynchronously for the CSV upload but synchronously for the questionnaire form submission |
||
self.async_validation_results = validate_visit_sync( | ||
birth_date=birth_date, | ||
observation_date=observation_date, | ||
height=height, | ||
weight=weight, | ||
sex=sex | ||
) | ||
|
||
self.handle_async_validation_errors() | ||
|
||
# Check that the hba1c value is within the correct range | ||
hba1c_value = cleaned_data["hba1c"] | ||
|
@@ -876,3 +783,24 @@ def round_to_one_decimal_place(value): | |
) | ||
|
||
return cleaned_data | ||
|
||
# Called when submitting the questionnaire. For CSV upload, instances are created directly in csv_upload to preserve | ||
# invalid data. Without overriding save here, the data from the dGC call would not be saved as the fields are not | ||
# in the list at the top (that we expect to receive from a POST). | ||
def save(self, commit=True): | ||
instance = super().save(commit=False) | ||
|
||
if getattr(self, "async_validation_results"): | ||
instance.bmi = self.async_validation_results.bmi | ||
|
||
for field_prefix in ["height", "weight", "bmi"]: | ||
result = getattr(self.async_validation_results, f"{field_prefix}_result") | ||
|
||
if result and not type(result) is ValidationError: | ||
setattr(instance, f"{field_prefix}_centile", result.centile) | ||
setattr(instance, f"{field_prefix}_sds", result.sds) | ||
|
||
if commit: | ||
instance.save() | ||
|
||
return instance |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
As these are calculated fields it should not be possible to submit them through the form