Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat/finishing typeddict inputs #95

Merged
merged 7 commits into from
Sep 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 10 additions & 1 deletion mypy.ini
Original file line number Diff line number Diff line change
Expand Up @@ -4,4 +4,13 @@ disallow_untyped_defs = True
warn_return_any = True

[mypy-grpc.*]
ignore_missing_imports = True
ignore_missing_imports = True

[mypy-parity.gen.*]
ignore_missing_imports = True

[mypy-pyd.*]
ignore_missing_imports = True

[mypy-tyd.*]
ignore_missing_imports = True
101 changes: 70 additions & 31 deletions replit_river/codegen/client.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
Set,
Tuple,
Union,
cast,
)

import black
Expand Down Expand Up @@ -80,8 +81,17 @@ def reindent(prefix: str, code: str) -> str:
return indent(dedent(code), prefix)


def is_literal(tpe: RiverType) -> bool:
if isinstance(tpe, RiverUnionType):
return all(is_literal(t) for t in tpe.anyOf)
elif isinstance(tpe, RiverConcreteType):
return tpe.type in set(["string", "number", "boolean"])
else:
return False


def encode_type(
type: RiverType, prefix: str, base_model: str = "BaseModel"
type: RiverType, prefix: str, base_model: str
) -> Tuple[str, Sequence[str]]:
chunks: List[str] = []
if isinstance(type, RiverNotType):
Expand Down Expand Up @@ -219,14 +229,6 @@ def flatten_union(tpe: RiverType) -> list[RiverType]:
type = original_type
any_of: List[str] = []

def is_literal(tpe: RiverType) -> bool:
if isinstance(tpe, RiverUnionType):
return all(is_literal(t) for t in tpe.anyOf)
elif isinstance(tpe, RiverConcreteType):
return tpe.type in set(["string", "number", "boolean"])
else:
return False

typeddict_encoder = []
for i, t in enumerate(type.anyOf):
type_name, type_chunks = encode_type(t, f"{prefix}AnyOf_{i}", base_model)
Expand Down Expand Up @@ -273,44 +275,44 @@ def extract_props(tpe: RiverType) -> list[dict[str, RiverType]]:
# Handle the case where type is not specified
typeddict_encoder.append("x")
return ("Any", ())
if type.type == "string":
elif type.type == "string":
if type.const:
typeddict_encoder.append(f"'{type.const}'")
return (f"Literal['{type.const}']", ())
else:
typeddict_encoder.append("x")
return ("str", ())
if type.type == "Uint8Array":
elif type.type == "Uint8Array":
typeddict_encoder.append("x.decode()")
return ("bytes", ())
if type.type == "number":
elif type.type == "number":
if type.const is not None:
# enums are represented as const number in the schema
typeddict_encoder.append(f"{type.const}")
return (f"Literal[{type.const}]", ())
typeddict_encoder.append("x")
return ("float", ())
if type.type == "integer":
elif type.type == "integer":
if type.const is not None:
# enums are represented as const number in the schema
typeddict_encoder.append(f"{type.const}")
return (f"Literal[{type.const}]", ())
typeddict_encoder.append("x")
return ("int", ())
if type.type == "boolean":
elif type.type == "boolean":
typeddict_encoder.append("x")
return ("bool", ())
if type.type == "null":
elif type.type == "null":
typeddict_encoder.append("None")
return ("None", ())
if type.type == "Date":
elif type.type == "Date":
typeddict_encoder.append("TODO: dstewart")
return ("datetime.datetime", ())
if type.type == "array" and type.items:
elif type.type == "array" and type.items:
type_name, type_chunks = encode_type(type.items, prefix, base_model)
typeddict_encoder.append("TODO: dstewart")
return (f"List[{type_name}]", type_chunks)
if (
elif (
type.type == "object"
and type.patternProperties
and "^(.*)$" in type.patternProperties
Expand All @@ -323,7 +325,11 @@ def extract_props(tpe: RiverType) -> list[dict[str, RiverType]]:
assert type.type == "object", type.type

current_chunks: List[str] = [f"class {prefix}({base_model}):"]
# For the encoder path, do we need "x" to be bound?
# lambda x: ... vs lambda _: {}
needs_binding = False
if type.properties:
needs_binding = True
typeddict_encoder.append("{")
for name, prop in type.properties.items():
typeddict_encoder.append(f"'{name}':")
Expand Down Expand Up @@ -353,18 +359,35 @@ def extract_props(tpe: RiverType) -> list[dict[str, RiverType]]:
)
if name not in prop.required:
typeddict_encoder.append(
f"if x['{safe_name}'] else None"
dedent(
f"""
if '{safe_name}' in x
and x['{safe_name}'] is not None
else None
"""
)
)
elif prop.type == "array":
assert type_name.startswith(
"List["
) # in case we change to list[...]
_inner_type_name = type_name[len("List[") : -len("]")]
typeddict_encoder.append(
f"[encode_{_inner_type_name}(y) for y in x['{name}']]"
)
items = cast(RiverConcreteType, prop).items
assert items, "Somehow items was none"
if is_literal(cast(RiverType, items)):
typeddict_encoder.append(f"x['{name}']")
else:
assert type_name.startswith(
"List["
) # in case we change to list[...]
_inner_type_name = type_name[len("List[") : -len("]")]
typeddict_encoder.append(
f"""[
encode_{_inner_type_name}(y)
for y in x['{name}']
]"""
)
else:
typeddict_encoder.append(f"x['{safe_name}']")
if name in prop.required:
typeddict_encoder.append(f"x['{safe_name}']")
blast-hardcheese marked this conversation as resolved.
Show resolved Hide resolved
else:
typeddict_encoder.append(f"x.get('{safe_name}')")

if name == "$kind":
# If the field is a literal, the Python type-checker will complain
Expand Down Expand Up @@ -403,8 +426,9 @@ def extract_props(tpe: RiverType) -> list[dict[str, RiverType]]:
current_chunks.append("")

if base_model == "TypedDict":
binding = "x" if needs_binding else "_"
current_chunks = (
[f"encode_{prefix}: Callable[['{prefix}'], Any] = (lambda x: "]
[f"encode_{prefix}: Callable[['{prefix}'], Any] = (lambda {binding}: "]
+ typeddict_encoder
+ [")"]
+ current_chunks
Expand Down Expand Up @@ -449,7 +473,7 @@ def generate_river_client_module(

if schema_root.handshakeSchema is not None:
(handshake_type, handshake_chunks) = encode_type(
schema_root.handshakeSchema, "HandshakeSchema"
schema_root.handshakeSchema, "HandshakeSchema", "BaseModel"
)
chunks.extend(handshake_chunks)
else:
Expand Down Expand Up @@ -482,7 +506,9 @@ def __init__(self, client: river.Client[{handshake_type}]):
)
chunks.extend(input_chunks)
output_type, output_chunks = encode_type(
procedure.output, f"{schema_name.title()}{name.title()}Output"
procedure.output,
f"{schema_name.title()}{name.title()}Output",
"BaseModel",
)
chunks.extend(output_chunks)
if procedure.errors:
Expand Down Expand Up @@ -517,7 +543,20 @@ def __init__(self, client: river.Client[{handshake_type}]):
""".rstrip()

if typed_dict_inputs:
render_input_method = f"encode_{input_type}"
if is_literal(procedure.input):
render_input_method = "lambda x: x"
elif isinstance(
procedure.input, RiverConcreteType
) and procedure.input.type in ["array"]:
assert input_type.startswith(
"List["
) # in case we change to list[...]
_input_type_name = input_type[len("List[") : -len("]")]
render_input_method = (
f"lambda xs: [encode_{_input_type_name}(x) for x in xs]"
)
else:
render_input_method = f"encode_{input_type}"
else:
render_input_method = f"""\
lambda x: TypeAdapter({input_type})
Expand Down
40 changes: 40 additions & 0 deletions scripts/parity.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
#!/usr/bin/env bash
#
# parity.sh: Generate Pydantic and TypedDict models and check for deep equality.
# This script expects that ai-infra is cloned alongside river-python.

set -e

scripts="$(dirname "$0")"
cd "${scripts}/.."

root="$(mktemp -d --tmpdir 'river-codegen-parity.XXX')"
mkdir "$root/src"

echo "Using $root" >&2

function cleanup {
if [ -z "${DEBUG}" ]; then
echo "Cleaning up..." >&2
rm -rfv "${root}" >&2
fi
}
trap "cleanup" 0 2 3 15

gen() {
fname="$1"; shift
name="$1"; shift
poetry run python -m replit_river.codegen \
client \
--output "${root}/src/${fname}" \
--client-name "${name}" \
../ai-infra/pkgs/pid2_client/src/schema/schema.json \
"$@"
}

gen tyd.py Pid2TypedDict --typed-dict-inputs
gen pyd.py Pid2Pydantic

PYTHONPATH="${root}/src:${scripts}"
poetry run bash -c "MYPYPATH='$PYTHONPATH' mypy -m parity.check_parity"
poetry run bash -c "PYTHONPATH='$PYTHONPATH' python -m parity.check_parity"
Loading
Loading