-
Notifications
You must be signed in to change notification settings - Fork 1.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
RFC: Checking conditional compilation at compile time #3013
Conversation
How will this handle build scripts? Those can set arbitrary cfgs without any statically known list on which they could set. These are for example used to detect features supported by the used rustc version. |
I think there's two parts to it: 1) What rustc does, and 2) what build tools do. This RFC covers what rustc does, and you get a lot of control over what forms of checking are turned on (and which are left turned off). For Cargo, I think the best approach would be to enable checking of However, even crates that use build.rs and --cfg names other than edit: I could add a section clarifying the impact on |
What happens if the build script forgets to do this (as will be the case for all proc-macros just after this is implemented)? Will cargo still warn about the missing cfg? That doesn't seem ideal. |
This also doesn't seem to consider that you can set |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think valid_values
is the most useful part of this; tracking other arbitrary cfg
s seems really hard.
To catch this error, we give `rustc` the set of valid condition names: | ||
|
||
```bash | ||
rustc --cfg 'valid(name1, name2, ..., nameN)' ... |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
What happens if you pass a cfg that's not marked as valid? I think you shouldn't need to specify anything that's already being passed.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Passing --cfg foo
implicitly means that foo
is valid. So --cfg foo --cfg 'valid(foo)'
is legal, but is redundant.
> 2. After stabilization, users can opt-in to conditional checking by using `cargo build --check-cfg`. | ||
> 3. Eventually, if the community experience is positive, Cargo could enable this check by default. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think cargo should unconditionally provide the information to rustc, and then you can configure the lint with normal lints flags (allow, deny, -D
).
@jyn512 writes:
Nothing will happen, because Cargo will not enable checking the set of all Or, we could have Cargo change its behavior depending on whether there is a
Good to know; I wasn't aware of I think this just emphasizes that it's good to split this into two parts: the mechanisms (which go in
The goal is to make life better for devs, not worse, of course. :) I think getting the mechanisms into the compiler, and then experimenting with how to turn them on/off, would be a good first step. |
For example, `rustc` can detect this bug, where the `test` condition is misspelled as `tset`: | ||
|
||
```rust | ||
if cfg!(tset) { // uh oh, should have been 'test' |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
A future possibility would be to check for simple misspellings for the well-known condition names, even when -cfg valid(...)
isn't used.
I guess this would catch most of the bugs this RFC wants to detect, but avoids the problem of false warnings caused by unknown -cfg
s from build scripts.
Implementation wise, maybe the logic from some diagnostics can be reused, like help: a config with a similar name exists: 'test'
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The feature proposed here feels very much desireable to me and actually I'm surprised that rustc
doesn't already do this.
A warning for a wrong cfg
falls in the caregory of "Thank you compiler, you just safed me from a weird bug." :)
But the CLI syntax should be simplified:
rustc --cfg 'valid(name1, name2, ..., nameN)' ...
rustc --cfg 'valid_values(c, "value1", "value2", ... "valueN")' ...
- There will surely be an environment that messes up the quotes or parentheses.
- The format is inconsistent with other rustc arguments, which are like
--arg=val1,val2,val3
. - These are not really
--cfg
arguments, so they should have their own--whatever
flags.
Alternatives that spring to my mind:
rustc --valid_cfgs=name1,name2,nameN
# Not shure how the handle this "arg with a list" situation
rustc --valid_values_for=cond1=value1,value2,valueN
# Special-casing features might be worth it if it's the only thing that will be implemented
rustc --valid_features=feature1,feature2,featureN
Co-authored-by: Joshua Nelson <joshua@yottadb.com>
I like that. I'll update the doc. |
Added new --check-cfg flag. Rather than changing the behavior of the existing --cfg flag, we enable validation by using --check-cfg. Clarified some special cases, like empty valid name sets.
I've updated the RFC. This moves the command-line options to a new I have a prototype implementation: https://github.com/sivadeilra/rust/tree/user/ardavis/check_cfg This prototype is NOT ready for a thorough review, but it does implement the RFC. |
You can probably link to the reference on conditional compilation for well-known values. As for drawbacks, it's more surface area. You're adding in command line arguments merely for a lint. And those command line arguments take up a lot of space that detracts from the arguments that actually do something. |
What would you suggest? I originally wrote the spec in such a way that the existing
I'm going to push back on this. This "does something" in the same sense that the |
I'm not suggesting anything to fix it. Merely to document it. Drawbacks are inherent in almost any proposal and they should be documented in the RFC. Usually, when I see a drawbacks section that says "None", it signals to me that the author hasn't thought hard enough about what the tradeoffs they are making actually are. I just posted the first drawback I could think of, but there are probably others, though nothing RFC-stopping to me. |
I've updated the drawbacks section. |
Hey folks, what's next? I think I've addressed all of the feedback. |
I think @scottmcm or another member of lang-team needs to start an FCP. |
Huzzah! The @rust-lang/compiler team has decided to accept this RFC. To track further discussion, subscribe to the tracking issue here: |
Implement --check-cfg option (RFC 3013), take 2 This pull-request implement RFC 3013: Checking conditional compilation at compile time (rust-lang/rfcs#3013) and is based on the previous attempt rust-lang#89346 by `@mwkmwkmwk` that was closed due to inactivity. I have address all the review comments from the previous attempt and added some more tests. cc rust-lang#82450 r? `@petrochenkov`
Add support for rustc --check-cfg well known names and values This pull-request add support for `rustc` `--check-cfg` well known names and values. ### What does this PR try to resolve? This pull-request add support for `rustc` `--check-cfg` well known names and values: - `-Z check-cfg-well-known-names`: `--check-cfg names()` well known names - `-Z check-cfg-well-known-values`: `--check-cfg values()` well known values ### How should we test and review this PR? #### Testing `cargo check -Z check-cfg-well-known-names` and `cargo check -Z check-cfg-well-known-values` #### Review This PR contains one commit that split `features_args` into `check_cfg_args`, add the well known support in it, adds call to that new function and add documentation and test for those new flags. ### Additional information This was implemented as two new additional flags because it's most likely that these flags will not be stabilize at the same time and also because some of these flags may become the default. RFC: rust-lang/rfcs#3013 `-Z check-cfg-features`: #10408 `cargo doc` support: #10428
Call for TestingThis is in preparation for stabilizing RFC 3013 adds validation to Note: the implementaion has drasticly changed since the RFC approval, please always refer to the cargo unstable docs and rustc unstable docs. For cargo usersTesting instructionsRequires:
Note: docs.rs now (automaticly) provides FeedbackWe are looking for any feedback:
You can leave feedback on the Cargo tracking issue. For maintainers of alternative build systemsTesting instructionsLook over FeedbackWe are looking for any feedback:
You can leave feedback on the Rust tracking issue. And thanks to @epage for this help in preparing this Call for Testing as well as his (and the Cargo team) support in helping move this feature forward. |
I'm the original author of the RFC for this feature. I want to thank @Urgau and @mwkmwkmwk for driving this work through its completion! I spent the time to write the original RFC and to "sell" the idea, but unfortunately other work required my focus. I am thankful that @mwkmwkmwk picked up this work and pushed it (the first cycle), and that @Urgau repeated that exercise and took it further, all the way to completion. Thank you both! I'm looking forward to being able to test this and use it, myself. |
Hello, This RFC will appear in the Call for Testing section of This Week in Rust # 534. I've removed the |
This is the next upgrade to the Rust toolchain, from 1.76.0 to 1.77.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). # Unstable features The `offset_of` feature (single-field `offset_of!`) that we were using got stabilized in Rust 1.77.0 [3]. Therefore, now the only unstable features allowed to be used outside the `kernel` crate is `new_uninit`, though other code to be upstreamed may increase the list. Please see [4] for details. # Required changes Rust 1.77.0 merged the `unused_tuple_struct_fields` lint into `dead_code`, thus upgrading it from `allow` to `warn` [5]. In turn, this makes `rustc` complain about the `ThisModule`'s pointer field being never read. Thus locally `allow` it for the moment, since we will have users later on (e.g. Binder needs a `as_ptr` method [6]). # Other changes Rust 1.77.0 introduces the `--check-cfg` feature [7], for which there is a Call for Testing going on [8]. We were requested to test it and we found it useful [9] -- we will likely enable it in the future. # `alloc` upgrade and reviewing The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1770-2024-03-21 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: rust-lang/rust#118799 [3] Link: #2 [4] Link: rust-lang/rust#118297 [5] Link: https://lore.kernel.org/rust-for-linux/20231101-rust-binder-v1-2-08ba9197f637@google.com/#Z31rust:kernel:lib.rs [6] Link: https://doc.rust-lang.org/nightly/unstable-book/compiler-flags/check-cfg.html [7] Link: rust-lang/rfcs#3013 (comment) [8] Link: rust-lang/rust#82450 (comment) [9] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> Link: https://lore.kernel.org/r/20240217002717.57507-1-ojeda@kernel.org
This is the next upgrade to the Rust toolchain, from 1.76.0 to 1.77.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). The `offset_of` feature (single-field `offset_of!`) that we were using got stabilized in Rust 1.77.0 [3]. Therefore, now the only unstable features allowed to be used outside the `kernel` crate is `new_uninit`, though other code to be upstreamed may increase the list. Please see [4] for details. Rust 1.77.0 merged the `unused_tuple_struct_fields` lint into `dead_code`, thus upgrading it from `allow` to `warn` [5]. In turn, this makes `rustc` complain about the `ThisModule`'s pointer field being never read. Thus locally `allow` it for the moment, since we will have users later on (e.g. Binder needs a `as_ptr` method [6]). Rust 1.77.0 introduces the `--check-cfg` feature [7], for which there is a Call for Testing going on [8]. We were requested to test it and we found it useful [9] -- we will likely enable it in the future. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1770-2024-03-21 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: rust-lang/rust#118799 [3] Link: #2 [4] Link: rust-lang/rust#118297 [5] Link: https://lore.kernel.org/rust-for-linux/20231101-rust-binder-v1-2-08ba9197f637@google.com/#Z31rust:kernel:lib.rs [6] Link: https://doc.rust-lang.org/nightly/unstable-book/compiler-flags/check-cfg.html [7] Link: rust-lang/rfcs#3013 (comment) [8] Link: rust-lang/rust#82450 (comment) [9] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> Link: https://lore.kernel.org/r/20240217002717.57507-1-ojeda@kernel.org
This is the next upgrade to the Rust toolchain, from 1.76.0 to 1.77.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). The `offset_of` feature (single-field `offset_of!`) that we were using got stabilized in Rust 1.77.0 [3]. Therefore, now the only unstable features allowed to be used outside the `kernel` crate is `new_uninit`, though other code to be upstreamed may increase the list. Please see [4] for details. Rust 1.77.0 merged the `unused_tuple_struct_fields` lint into `dead_code`, thus upgrading it from `allow` to `warn` [5]. In turn, this makes `rustc` complain about the `ThisModule`'s pointer field being never read. Thus locally `allow` it for the moment, since we will have users later on (e.g. Binder needs a `as_ptr` method [6]). Rust 1.77.0 introduces the `--check-cfg` feature [7], for which there is a Call for Testing going on [8]. We were requested to test it and we found it useful [9] -- we will likely enable it in the future. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1770-2024-03-21 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: rust-lang/rust#118799 [3] Link: #2 [4] Link: rust-lang/rust#118297 [5] Link: https://lore.kernel.org/rust-for-linux/20231101-rust-binder-v1-2-08ba9197f637@google.com/#Z31rust:kernel:lib.rs [6] Link: https://doc.rust-lang.org/nightly/unstable-book/compiler-flags/check-cfg.html [7] Link: rust-lang/rfcs#3013 (comment) [8] Link: rust-lang/rust#82450 (comment) [9] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> Link: https://lore.kernel.org/r/20240217002717.57507-1-ojeda@kernel.org
This is the next upgrade to the Rust toolchain, from 1.76.0 to 1.77.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). The `offset_of` feature (single-field `offset_of!`) that we were using got stabilized in Rust 1.77.0 [3]. Therefore, now the only unstable features allowed to be used outside the `kernel` crate is `new_uninit`, though other code to be upstreamed may increase the list. Please see [4] for details. Rust 1.77.0 merged the `unused_tuple_struct_fields` lint into `dead_code`, thus upgrading it from `allow` to `warn` [5]. In turn, this makes `rustc` complain about the `ThisModule`'s pointer field being never read. Thus locally `allow` it for the moment, since we will have users later on (e.g. Binder needs a `as_ptr` method [6]). Rust 1.77.0 introduces the `--check-cfg` feature [7], for which there is a Call for Testing going on [8]. We were requested to test it and we found it useful [9] -- we will likely enable it in the future. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1770-2024-03-21 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: rust-lang/rust#118799 [3] Link: #2 [4] Link: rust-lang/rust#118297 [5] Link: https://lore.kernel.org/rust-for-linux/20231101-rust-binder-v1-2-08ba9197f637@google.com/#Z31rust:kernel:lib.rs [6] Link: https://doc.rust-lang.org/nightly/unstable-book/compiler-flags/check-cfg.html [7] Link: rust-lang/rfcs#3013 (comment) [8] Link: rust-lang/rust#82450 (comment) [9] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> Link: https://lore.kernel.org/r/20240217002717.57507-1-ojeda@kernel.org
This is the next upgrade to the Rust toolchain, from 1.76.0 to 1.77.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). The `offset_of` feature (single-field `offset_of!`) that we were using got stabilized in Rust 1.77.0 [3]. Therefore, now the only unstable features allowed to be used outside the `kernel` crate is `new_uninit`, though other code to be upstreamed may increase the list. Please see [4] for details. Rust 1.77.0 merged the `unused_tuple_struct_fields` lint into `dead_code`, thus upgrading it from `allow` to `warn` [5]. In turn, this makes `rustc` complain about the `ThisModule`'s pointer field being never read. Thus locally `allow` it for the moment, since we will have users later on (e.g. Binder needs a `as_ptr` method [6]). Rust 1.77.0 introduces the `--check-cfg` feature [7], for which there is a Call for Testing going on [8]. We were requested to test it and we found it useful [9] -- we will likely enable it in the future. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1770-2024-03-21 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: rust-lang/rust#118799 [3] Link: #2 [4] Link: rust-lang/rust#118297 [5] Link: https://lore.kernel.org/rust-for-linux/20231101-rust-binder-v1-2-08ba9197f637@google.com/#Z31rust:kernel:lib.rs [6] Link: https://doc.rust-lang.org/nightly/unstable-book/compiler-flags/check-cfg.html [7] Link: rust-lang/rfcs#3013 (comment) [8] Link: rust-lang/rust#82450 (comment) [9] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> Link: https://lore.kernel.org/r/20240217002717.57507-1-ojeda@kernel.org [boqun: Resolve the conflicts with using upstream alloc]
This is the next upgrade to the Rust toolchain, from 1.76.0 to 1.77.1 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). # Unstable features The `offset_of` feature (single-field `offset_of!`) that we were using got stabilized in Rust 1.77.0 [3]. Therefore, now the only unstable features allowed to be used outside the `kernel` crate is `new_uninit`, though other code to be upstreamed may increase the list. Please see [4] for details. # Required changes Rust 1.77.0 merged the `unused_tuple_struct_fields` lint into `dead_code`, thus upgrading it from `allow` to `warn` [5]. In turn, this made `rustc` complain about the `ThisModule`'s pointer field being never read, but the previous patch adds the `as_ptr` method to it, needed by Binder [6], so that we do not need to locally `allow` it. # Other changes Rust 1.77.0 introduces the `--check-cfg` feature [7], for which there is a Call for Testing going on [8]. We were requested to test it and we found it useful [9] -- we will likely enable it in the future. # `alloc` upgrade and reviewing The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1770-2024-03-21 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: rust-lang/rust#118799 [3] Link: Rust-for-Linux#2 [4] Link: rust-lang/rust#118297 [5] Link: https://lore.kernel.org/rust-for-linux/20231101-rust-binder-v1-2-08ba9197f637@google.com/#Z31rust:kernel:lib.rs [6] Link: https://doc.rust-lang.org/nightly/unstable-book/compiler-flags/check-cfg.html [7] Link: rust-lang/rfcs#3013 (comment) [8] Link: rust-lang/rust#82450 (comment) [9] Reviewed-by: Alice Ryhl <aliceryhl@google.com> Tested-by: Boqun Feng <boqun.feng@gmail.com> Link: https://lore.kernel.org/r/20240217002717.57507-1-ojeda@kernel.org [ Upgraded to 1.77.1. No changed to `alloc` during the beta. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
This is the next upgrade to the Rust toolchain, from 1.76.0 to 1.77.1 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). # Unstable features The `offset_of` feature (single-field `offset_of!`) that we were using got stabilized in Rust 1.77.0 [3]. Therefore, now the only unstable features allowed to be used outside the `kernel` crate is `new_uninit`, though other code to be upstreamed may increase the list. Please see [4] for details. # Required changes Rust 1.77.0 merged the `unused_tuple_struct_fields` lint into `dead_code`, thus upgrading it from `allow` to `warn` [5]. In turn, this made `rustc` complain about the `ThisModule`'s pointer field being never read, but the previous patch adds the `as_ptr` method to it, needed by Binder [6], so that we do not need to locally `allow` it. # Other changes Rust 1.77.0 introduces the `--check-cfg` feature [7], for which there is a Call for Testing going on [8]. We were requested to test it and we found it useful [9] -- we will likely enable it in the future. # `alloc` upgrade and reviewing The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1770-2024-03-21 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: rust-lang/rust#118799 [3] Link: #2 [4] Link: rust-lang/rust#118297 [5] Link: https://lore.kernel.org/rust-for-linux/20231101-rust-binder-v1-2-08ba9197f637@google.com/#Z31rust:kernel:lib.rs [6] Link: https://doc.rust-lang.org/nightly/unstable-book/compiler-flags/check-cfg.html [7] Link: rust-lang/rfcs#3013 (comment) [8] Link: rust-lang/rust#82450 (comment) [9] Reviewed-by: Alice Ryhl <aliceryhl@google.com> Tested-by: Boqun Feng <boqun.feng@gmail.com> Link: https://lore.kernel.org/r/20240217002717.57507-1-ojeda@kernel.org [ Upgraded to 1.77.1. Removed `allow(dead_code)` thanks to the previous patch. Reworded accordingly. No changes to `alloc` during the beta. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
This is the next upgrade to the Rust toolchain, from 1.76.0 to 1.77.1 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). # Unstable features The `offset_of` feature (single-field `offset_of!`) that we were using got stabilized in Rust 1.77.0 [3]. Therefore, now the only unstable features allowed to be used outside the `kernel` crate is `new_uninit`, though other code to be upstreamed may increase the list. Please see [4] for details. # Required changes Rust 1.77.0 merged the `unused_tuple_struct_fields` lint into `dead_code`, thus upgrading it from `allow` to `warn` [5]. In turn, this made `rustc` complain about the `ThisModule`'s pointer field being never read, but the previous patch adds the `as_ptr` method to it, needed by Binder [6], so that we do not need to locally `allow` it. # Other changes Rust 1.77.0 introduces the `--check-cfg` feature [7], for which there is a Call for Testing going on [8]. We were requested to test it and we found it useful [9] -- we will likely enable it in the future. # `alloc` upgrade and reviewing The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1770-2024-03-21 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: rust-lang/rust#118799 [3] Link: Rust-for-Linux#2 [4] Link: rust-lang/rust#118297 [5] Link: https://lore.kernel.org/rust-for-linux/20231101-rust-binder-v1-2-08ba9197f637@google.com/#Z31rust:kernel:lib.rs [6] Link: https://doc.rust-lang.org/nightly/unstable-book/compiler-flags/check-cfg.html [7] Link: rust-lang/rfcs#3013 (comment) [8] Link: rust-lang/rust#82450 (comment) [9] Reviewed-by: Alice Ryhl <aliceryhl@google.com> Tested-by: Boqun Feng <boqun.feng@gmail.com> Link: https://lore.kernel.org/r/20240217002717.57507-1-ojeda@kernel.org [ Upgraded to 1.77.1. Removed `allow(dead_code)` thanks to the previous patch. Reworded accordingly. No changes to `alloc` during the beta. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
This proposes a minor new feature for rustc and cargo, which will allow rustc to detect
invalid usage of #[cfg] conditions, such as misspelling a "feature" name.
The feature is purely opt-in. If the user doesn't enable this feature, then there is no impact on anything.
If the user does enable this feature, then the only possible impact is that rustc fires new diagnostics.
Language semantics, codegen, etc. are all unchanged.
Rendered