Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

sage.schemes: Replace imports from sage.*.all for namespace packages #35033

Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/sage/schemes/affine/affine_morphism.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@
from sage.misc.cachefunc import cached_method
from sage.misc.lazy_attribute import lazy_attribute

from sage.arith.all import gcd
from sage.arith.misc import GCD as gcd

from sage.rings.integer import Integer
from sage.rings.finite_rings.finite_field_constructor import is_PrimeFiniteField
Expand Down
6 changes: 4 additions & 2 deletions src/sage/schemes/elliptic_curves/BSD.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,9 @@
"Birch and Swinnerton-Dyer formulas"

from sage.arith.misc import prime_divisors
from sage.rings.all import ZZ, Infinity, QuadraticField
from sage.rings.integer_ring import ZZ
from sage.rings.infinity import Infinity
from sage.rings.number_field.number_field import QuadraticField
from sage.functions.other import ceil


Expand Down Expand Up @@ -480,7 +482,7 @@ def prove_BSD(E, verbosity=0, two_desc='mwrank', proof=None, secs_hi=5,
# We do not know BSD(E,p) for even a single p, since it's
# an open problem to show that L^r(E,1)/(Reg*Omega) is
# rational for any curve with r >= 2.
from sage.sets.all import Primes
from sage.sets.primes import Primes
BSD.primes = Primes()
if return_BSD:
BSD.rank = rank_lower_bd
Expand Down
5 changes: 4 additions & 1 deletion src/sage/schemes/elliptic_curves/cardinality.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,10 @@
# ****************************************************************************
from .constructor import EllipticCurve, EllipticCurve_from_j
from sage.schemes.curves.projective_curve import Hasse_bounds
from sage.rings.all import Integer, ZZ, GF, polygen
from sage.rings.integer import Integer
from sage.rings.integer_ring import ZZ
from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF
from sage.rings.polynomial.polynomial_ring import polygen
from sage.groups.generic import order_from_bounds


Expand Down
18 changes: 10 additions & 8 deletions src/sage/schemes/elliptic_curves/cm.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,12 +34,12 @@
# ****************************************************************************

from sage.interfaces.magma import magma
from sage.rings.all import (Integer,
QQ,
ZZ,
IntegerRing,
is_fundamental_discriminant,
PolynomialRing)
from sage.rings.integer import Integer
from sage.rings.rational_field import QQ
from sage.rings.integer_ring import ZZ
from sage.rings.integer_ring import IntegerRing
from sage.rings.number_field.number_field import is_fundamental_discriminant
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing

from sage.misc.cachefunc import cached_function

Expand Down Expand Up @@ -124,7 +124,8 @@ def hilbert_class_polynomial(D, algorithm=None):
raise ValueError("%s is not a valid algorithm" % algorithm)

from sage.quadratic_forms.binary_qf import BinaryQF_reduced_representatives
from sage.rings.all import RR, ComplexField
from sage.rings.real_mpfr import RR
from sage.rings.complex_mpfr import ComplexField
from sage.functions.all import elliptic_j

# get all primitive reduced quadratic forms, (necessary to exclude
Expand Down Expand Up @@ -623,7 +624,8 @@ def is_cm_j_invariant(j, method='new'):
True
"""
# First we check that j is an algebraic number:
from sage.rings.all import NumberFieldElement, NumberField
from sage.rings.number_field.number_field_element import NumberFieldElement
from sage.rings.number_field.number_field import NumberField
if not isinstance(j, NumberFieldElement) and j not in QQ:
raise NotImplementedError("is_cm_j_invariant() is only implemented for number field elements")

Expand Down
4 changes: 2 additions & 2 deletions src/sage/schemes/elliptic_curves/descent_two_isogeny.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,8 @@ from sage.rings.integer_ring import ZZ
from sage.rings.polynomial.polynomial_ring import polygen
cdef object x_ZZ = polygen(ZZ)
from sage.rings.polynomial.real_roots import real_roots
from sage.arith.all import prime_divisors
from sage.all import ntl
from sage.arith.misc import prime_divisors
import sage.libs.ntl.all as ntl

from sage.rings.integer cimport Integer
from sage.libs.gmp.mpz cimport *
Expand Down
2 changes: 1 addition & 1 deletion src/sage/schemes/elliptic_curves/ell_curve_isogeny.py
Original file line number Diff line number Diff line change
Expand Up @@ -2486,7 +2486,7 @@ def __compute_omega_general(self, E, psi, psi_pr, phi, phi_pr):
# thesis are wrong, the correct formulas
# are coded below

from sage.arith.all import binomial
from sage.arith.misc import binomial

for j in range(n - 1):
psi_prpr += binomial(j+2, 2) * psi[j+2] * cur_x_pow
Expand Down
2 changes: 1 addition & 1 deletion src/sage/schemes/elliptic_curves/ell_field.py
Original file line number Diff line number Diff line change
Expand Up @@ -1426,7 +1426,7 @@ def isogenies_prime_degree(self, l=None, max_l=31):
raise NotImplementedError("This code could be implemented for QQbar, but has not been yet.")

if l is None:
from sage.rings.all import prime_range
from sage.rings.fast_arith import prime_range
L = prime_range(max_l + 1)
else:
try:
Expand Down
22 changes: 14 additions & 8 deletions src/sage/schemes/elliptic_curves/ell_finite_field.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,18 +23,24 @@
# https://www.gnu.org/licenses/
# ****************************************************************************

import sage.groups.generic as generic

from sage.arith.functions import lcm
from sage.arith.misc import binomial, GCD as gcd
from sage.groups.additive_abelian.additive_abelian_wrapper import AdditiveAbelianGroupWrapper
from sage.misc.cachefunc import cached_method
from sage.rings.finite_rings.element_base import is_FiniteFieldElement
from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF
from sage.rings.integer import Integer
from sage.rings.integer_ring import ZZ
from sage.rings.polynomial.polynomial_ring import polygen
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
from sage.schemes.curves.projective_curve import Hasse_bounds
from .ell_field import EllipticCurve_field
from .constructor import EllipticCurve
from sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field import HyperellipticCurve_finite_field
from sage.rings.all import Integer, ZZ, PolynomialRing, GF, polygen
from sage.rings.finite_rings.element_base import is_FiniteFieldElement
import sage.groups.generic as generic

from . import ell_point
from sage.arith.all import gcd, lcm, binomial
from sage.misc.cachefunc import cached_method
from sage.groups.additive_abelian.additive_abelian_wrapper import AdditiveAbelianGroupWrapper
from .constructor import EllipticCurve
from .ell_field import EllipticCurve_field


class EllipticCurve_finite_field(EllipticCurve_field, HyperellipticCurve_finite_field):
Expand Down
2 changes: 1 addition & 1 deletion src/sage/schemes/elliptic_curves/ell_generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@
import sage.groups.additive_abelian.additive_abelian_group as groups
import sage.groups.generic as generic

from sage.arith.all import lcm
from sage.arith.functions import lcm
import sage.rings.all as rings
from sage.misc.cachefunc import cached_method
from sage.misc.fast_methods import WithEqualityById
Expand Down
17 changes: 10 additions & 7 deletions src/sage/schemes/elliptic_curves/ell_modular_symbols.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,19 +87,22 @@
# http://www.gnu.org/licenses/
#*****************************************************************************

from sage.structure.sage_object import SageObject
from sage.modular.modsym.all import ModularSymbols
from sage.arith.misc import (kronecker as kronecker_symbol,
next_prime,
prime_divisors,
valuation)
from sage.databases.cremona import parse_cremona_label

from sage.arith.all import next_prime, kronecker_symbol, prime_divisors, valuation
from sage.misc.verbose import verbose
from sage.modular.cusps import Cusps
from sage.modular.modsym.all import ModularSymbols
from sage.rings.infinity import unsigned_infinity as infinity
from sage.rings.integer import Integer
from sage.modular.cusps import Cusps
from sage.rings.integer_ring import ZZ
from sage.rings.rational_field import QQ
from sage.misc.verbose import verbose
from sage.structure.sage_object import SageObject

from .constructor import EllipticCurve

from sage.schemes.elliptic_curves.constructor import EllipticCurve

oo = Cusps(infinity)
zero = Integer(0)
Expand Down
4 changes: 2 additions & 2 deletions src/sage/schemes/elliptic_curves/ell_number_field.py
Original file line number Diff line number Diff line change
Expand Up @@ -388,7 +388,7 @@ def height_pairing_matrix(self, points=None, precision=None, normalised=True):
RR = RealField()
else:
RR = RealField(precision)
from sage.matrix.all import MatrixSpace
from sage.matrix.matrix_space import MatrixSpace
M = MatrixSpace(RR, r)
mat = M()
for j in range(r):
Expand Down Expand Up @@ -3892,7 +3892,7 @@ def saturation(self, points, verbose=False,
raise ValueError("points not linearly independent in saturation()")
sat_reg = reg

from sage.rings.all import prime_range
from sage.rings.fast_arith import prime_range
if full_saturation:
if lower_ht_bound is None:
# TODO (robertwb): verify this for rank > 1
Expand Down
8 changes: 6 additions & 2 deletions src/sage/schemes/elliptic_curves/ell_point.py
Original file line number Diff line number Diff line change
Expand Up @@ -2836,7 +2836,9 @@ def archimedean_local_height(self, v=None, prec=None, weighted=False):
4.0000000000000000000000000000000000000000000000000000000000
"""
from sage.rings.number_field.number_field import refine_embedding
from sage.all import RealField, ComplexField, Infinity
from sage.rings.real_mpfr import RealField
from sage.rings.complex_mpfr import ComplexField
from sage.rings.infinity import Infinity

E = self.curve()
K = E.base_ring()
Expand Down Expand Up @@ -3257,7 +3259,9 @@ def elliptic_logarithm(self, embedding=None, precision=100,
0.70448375537782208460499649302 - 0.79246725643650979858266018068*I
"""
from sage.rings.number_field.number_field import refine_embedding
from sage.rings.all import RealField, ComplexField, QQ
from sage.rings.real_mpfr import RealField
from sage.rings.complex_mpfr import ComplexField
from sage.rings.rational_field import QQ

# Check the trivial case:

Expand Down
21 changes: 11 additions & 10 deletions src/sage/schemes/elliptic_curves/ell_rational_field.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,13 +74,14 @@

import sage.arith.all as arith
import sage.rings.all as rings
from sage.rings.all import (
PowerSeriesRing,
infinity as oo,
ZZ, QQ,
Integer,
IntegerRing, RealField,
ComplexField, RationalField)
from sage.rings.power_series_ring import PowerSeriesRing
from sage.rings.infinity import Infinity as oo
from sage.rings.integer_ring import ZZ, IntegerRing
from sage.rings.rational_field import QQ
from sage.rings.integer import Integer
from sage.rings.real_mpfr import RealField
from sage.rings.complex_mpfr import ComplexField
from sage.rings.rational_field import RationalField

from sage.structure.coerce import py_scalar_to_element
from sage.structure.element import Element
Expand Down Expand Up @@ -3436,7 +3437,7 @@ def Lambda(self, s, prec):
sage: E.Lambda(1.4+0.5*I, 50)
-0.354172680517... + 0.874518681720...*I
"""
from sage.all import pi
from sage.symbolic.constants import pi

s = C(s)
N = self.conductor()
Expand Down Expand Up @@ -6013,7 +6014,7 @@ def point_preprocessing(free,tor):
roots.remove(e3)
e1,e2 = roots

from sage.all import pi
from sage.symbolic.constants import pi
e = R(1).exp()
pi = R(pi)

Expand Down Expand Up @@ -7054,7 +7055,7 @@ def elliptic_curve_congruence_graph(curves):
Graph on 12 vertices
"""
from sage.graphs.graph import Graph
from sage.arith.all import lcm
from sage.arith.functions import lcm
from sage.rings.fast_arith import prime_range
from sage.misc.misc_c import prod
G = Graph()
Expand Down
2 changes: 1 addition & 1 deletion src/sage/schemes/elliptic_curves/ell_tate_curve.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@
from sage.rings.padics.factory import Qp
from sage.structure.sage_object import SageObject
from sage.structure.richcmp import richcmp, richcmp_method
from sage.arith.all import LCM
from sage.arith.functions import lcm as LCM
from sage.modular.modform.constructor import EisensteinForms, CuspForms
from sage.schemes.elliptic_curves.constructor import EllipticCurve
from sage.functions.log import log
Expand Down
2 changes: 1 addition & 1 deletion src/sage/schemes/elliptic_curves/ell_torsion.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@
# ****************************************************************************

from sage.misc.cachefunc import cached_method
from sage.rings.all import RationalField
from sage.rings.rational_field import RationalField
import sage.groups.additive_abelian.additive_abelian_wrapper as groups
from sage.structure.richcmp import richcmp_method, richcmp

Expand Down
2 changes: 1 addition & 1 deletion src/sage/schemes/elliptic_curves/formal_group.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@

import sage.misc.misc as misc
import sage.rings.all as rings
from sage.rings.all import O
from sage.rings.big_oh import O


class EllipticCurveFormalGroup(SageObject):
Expand Down
3 changes: 2 additions & 1 deletion src/sage/schemes/elliptic_curves/gal_reps.py
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,8 @@
import sage.misc.all as misc
from sage.misc.verbose import verbose
import sage.rings.all as rings
from sage.rings.all import RealField, GF
from sage.rings.real_mpfr import RealField
from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF

from math import sqrt
from sage.libs.pari.all import pari
Expand Down
13 changes: 8 additions & 5 deletions src/sage/schemes/elliptic_curves/gal_reps_number_field.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,14 +45,17 @@
# https://www.gnu.org/licenses/
# ****************************************************************************

from sage.structure.sage_object import SageObject
from sage.rings.number_field.number_field import NumberField
from sage.arith.misc import legendre_symbol, primes
from sage.misc.functional import cyclotomic_polynomial
from sage.modules.free_module import VectorSpace
from sage.rings.finite_rings.finite_field_constructor import GF
from sage.misc.functional import cyclotomic_polynomial
from sage.arith.all import legendre_symbol, primes
from sage.rings.infinity import Infinity
from sage.rings.integer import Integer
from sage.rings.integer_ring import ZZ
from sage.rings.number_field.number_field import NumberField
from sage.rings.rational_field import QQ
from sage.sets.set import Set
from sage.rings.all import Integer, ZZ, QQ, Infinity
from sage.structure.sage_object import SageObject


class GaloisRepresentation(SageObject):
Expand Down
40 changes: 22 additions & 18 deletions src/sage/schemes/elliptic_curves/heegner.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,30 +92,34 @@
# https://www.gnu.org/licenses/
# ****************************************************************************


from sage.misc.misc_c import prod
from sage.misc.verbose import verbose
from sage.misc.cachefunc import cached_method

from sage.structure.sage_object import SageObject
from sage.structure.richcmp import (richcmp_method, richcmp,
richcmp_not_equal, rich_to_bool)

import sage.rings.abc
import sage.rings.number_field.number_field_element
import sage.rings.number_field.number_field as number_field
import sage.rings.all as rings
from sage.rings.all import (ZZ, GF, QQ, CDF,
Integers, RealField, ComplexField, QuadraticField)
from sage.arith.all import (gcd, xgcd, lcm, prime_divisors, factorial,
binomial)

from sage.arith.functions import lcm
from sage.arith.misc import (binomial, factorial, prime_divisors,
GCD as gcd, XGCD as xgcd)
from sage.matrix.constructor import Matrix as matrix
from sage.matrix.matrix_space import MatrixSpace
from sage.misc.cachefunc import cached_method
from sage.misc.misc_c import prod
from sage.misc.verbose import verbose
from sage.modular.modsym.p1list import P1List
from sage.rings.complex_double import CDF
from sage.rings.complex_mpfr import ComplexField
from sage.rings.factorint import factor_trial_division
from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF
from sage.rings.finite_rings.integer_mod_ring import IntegerModRing as Integers
from sage.rings.integer_ring import ZZ
from sage.rings.number_field.number_field import QuadraticField
from sage.rings.rational_field import QQ
from sage.rings.real_mpfr import RealField
from sage.quadratic_forms.all import (BinaryQF,
BinaryQF_reduced_representatives)
from sage.matrix.all import MatrixSpace, matrix

from sage.modular.modsym.p1list import P1List

from sage.structure.sage_object import SageObject
from sage.structure.richcmp import (richcmp_method, richcmp,
richcmp_not_equal, rich_to_bool)

###############################################################################
#
Expand Down Expand Up @@ -6822,7 +6826,7 @@ def heegner_index_bound(self, D=0, prec=5, max_height=None):
else:
H = 4*h
p = 3
from sage.all import next_prime
from sage.arith.misc import next_prime
while True:
c = H/(2*p**2) + B
if c < max_height:
Expand Down
Loading