Refer to this User Guide for instructions on loading required packages and launching Jupyter Notebook in Expanse.
The following table lists the notebooks in alphabetical order. To view by type, use the links below:
Notebook Project | Notebook | Type | Required (Sub) Modules |
---|---|---|---|
CUDA_GPU_Computing_Pi | cuda_gpu_nvidia_computing_pi_solution.ipynb | GPU, Parallel | numba , math , numpy , cuda |
CUDA_GPU_Distance_Matrix | cuda_gpu_nvidia_distance_matrix_solution.ipynb | GPU, Parallel | numba , math , numpy , cuda |
CUDA_GPU_Law_Of_Cosines | cuda_gpu_nvidia_law_of_cosines_solution.ipynb | GPU, Parallel | numba , math , numpy , vectorize , cuda |
Clustering_Visualizations | Introduction_to_Clustering.ipynb | CPU, Serial | scikit-learn , numpy , matplotlib , sciPy , make_blobs , KMeans , dendrogram , linkage , AgglomerativeClustering |
Dask_Graph_CPU | dask_graphs_CPU.ipynb | CPU, Parallel | dask |
Dask_Graph_GPU | dask_graphs_GPU.ipynb | GPU, Parallel | dask , cupy , dask.array , array |
Data_Analysis | data_analysis_pandas.ipynb | CPU, Serial | numpy , pandas |
Data_Analysis_Cupy | data_analysis_cupy.ipynb | GPU, Parallel | cupy , cudf , pandas , numpy |
Decision_Trees | Decision trees.ipynb | CPU, Serial | scikit-learn , tree , sklearn.datasets , graphviz , load_iris |
Graphs&Networks | NetworkX.ipynb | CPU, Serial | NetworkX , matplotlib.pyplot , networkx , write_dot , networkx.drawing.nx_pydot , networkx |
Hello_World_CPU | hello_world_cpu.ipynb | CPU, Serial | |
Hello_World_GPU | hello_world_gpu.ipynb | GPU, Serial | |
Image_Processing | Pillow.ipynb | CPU, Serial | PIL , Image , sys , ImageFilter , ImageEnhance |
Matplotlib_Intro | matplotlib_intro.ipynb | CPU, Serial | matplotlib , matplotlib.pyplot , numpy |
Multithreaded_Processing_CPU | multithreaded_processing.ipynb | CPU, Parallel | mkl , numpy , dask.array |
NumPy_Intro | numpy_intro.ipynb | CPU, Serial | numpy , operator , add , matplotlib.pyplot , collections , Counter |
Python_Data_Analysis_Library | PandasCSV.ipynb | CPU, Serial | IPython.display , Image , pandas |
String_Processing | Regression.ipynb | CPU, Serial | sklearn , linear_model , mean_squared_error , r2_score , sklearn.datasets , load_diabetes , numpy , matplotlib.pyplot , pandas , scipy , stats |
Tensorflow_Image_Classification | Image Classification.ipynb | CPU, GPU, Parallel | tensorflow , matplotlib.pyplot , numpy , PIL , keras , layers , tensorflow.keras , tensorflow.keras.models , Sequential , pathlib |
Tensorflow_Simple_Training | SimpleTraining.ipynb | CPU, GPU, Parallel | tensorflow , numpy , csv , matplotlib.pyplot |