Automatic Network Pruning via Hilbert-Schmidt Independence Criterion Lasso under Information Bottleneck Principle
Automatic Network Pruning via Hilbert-Schmidt Independence Criterion Lasso under Information Bottleneck Principle Song Guo, Lei Zhang, Xiawu Zheng, Yan Wang, Yuchao Li, Fei Chao, ShengChuan Zhang, Chenglin Wu, Rongrong Ji ICCV 2023
pruning ratio (FLOPs): 66%
python main.py \
--model vgg16\
--dataset cifar10\
--target 107000000 \
--ckpt [pre-trained model dir] \
--data_path [dataset path]\
--omega 40\
--tolerance 0.01\
--alpha 5e-5
pruning ratio (FLOPs): 55%
python main.py \
--model resnet56\
--dataset cifar10\
--target 57000000 \
--ckpt [pre-trained model dir] \
--data_path [dataset path]\
--omega 5\
--tolerance 0.01\
--alpha 8e-4
pruning ratio (FLOPs): 63%
python main.py \
--model resnet110\
--dataset cifar10\
--target 96000000 \
--ckpt [pre-trained model dir] \
--data_path [dataset path]\
--omega 5\
--tolerance 0.01\
--alpha 8e-9
pruning ratio (FLOPs): 63%
python main.py \
--model googlenet\
--dataset cifar10\
--target 568000000 \
--ckpt [pre-trained model dir] \
--data_path [dataset path]\
--omega 9\
--tolerance 0.01\
--alpha 4e-8
pruning ratio (FLOPs): 62%
python main.py \
--model resnet50\
--dataset imagenet\
--target 1550000000 \
--ckpt [pre-trained model dir] \
--data_path [dataset path]\
--omega 1\
--tolerance 0.01\
--alpha 7e-5
python train.py \
--model vgg16\
--dataset cifar10\
--lr 0.1\
--batch_size 256 \
--ckpt_path [pruned model dir]\
--data_path [dataset path]
python train.py \
--model resnet50\
--dataset imagenet\
--lr 0.01\
--batch_size 128 \
--ckpt_path [pruned model dir]\
--data_path [dataset path]
Additionally, we provide the pre-trained models used in our experiments.
Vgg-16
| ResNet56
| ResNet110
| GoogLeNet
Our implementation partially reuses Lasso's code | HRank's code | ITPruner's code.