Skip to content

Commit

Permalink
Add parseval's identity
Browse files Browse the repository at this point in the history
Signed-off-by: Thomas Gassmann <tgassmann@student.ethz.ch>
  • Loading branch information
thomasgassmann committed Jun 29, 2024
1 parent 2812eea commit de3f0d5
Showing 1 changed file with 7 additions and 0 deletions.
7 changes: 7 additions & 0 deletions complex-analysis/complex.tex
Original file line number Diff line number Diff line change
Expand Up @@ -1252,6 +1252,13 @@ \subsection{Faltung}
Sei \(f\colon\mathbb{R}\to\mathbb{C}\) eine absolut integrierbar Funktion deren Fourier-Transformation auch absolut integrierbar ist. Dann gilt: \begin{align*} \int_{-\infty}^{\infty} |f(t)|^2 \,dt = \int_{-\infty}^{\infty} |\hat{f}(\omega )|^2\,d\omega \end{align*}
\end{subbox}

\begin{subbox}{Parseval's Identität}
Für eine $2\pi$-periodische Funktion $f$ und ihre Fourierreihenkoeffizienten $c_n$ gilt:
$$
\sum_{n = -\infty}^\infty | c_n |^2 = \frac{1}{2\pi} \int_{-\pi}^\pi |f(t)|^2 dt
$$
\end{subbox}

\section{Laplace-Transformation}

\subsection{Grundbegriffe}
Expand Down

0 comments on commit de3f0d5

Please sign in to comment.