Skip to content

yezehao/BDL-based-semantic-segmentation

Repository files navigation

BDL based Sematic Segmentation

GitHub License GitHub last commit GitHub top language

Overview

This is a MSc individual project to enhance the visual detection capabilities of USVs by utilizing Bayesian SegNet. This project aims to enhance the reliability of USVs in complex and dynamic marine environments despite the scarcity of marine datasets.

Achievement

Bayesian SegNet on MaSTr1325 dataset avater

Bayesian SegNet on OASIs dataset avater

Gantt Chart

gantt
    dateFormat  YYYY-MM-DD
    title PROJ00114PG Bayesian deep learning based semantic segmentation for marine environments

    Mataining this Gantt Chart [Z. Ye] : crit, 2024-03-01, 2024-09-16

    section  Preliminary Preparation
    Literature Review: activate, 2024-03-01, 2024-07-01
    Outline Plan: done, crit, milestone, 2024-03-21, 0d
    Project Planning: done, 2024-03-21, 2024-04-30
    Project Initialization: done, crit, milestone, 2024-05-18, 0d 

    section Design & Development
    BNN on Simple Regression Problem: done, 2024-05-18, 2024-05-28
    WR - 20240528: done, milestone, 2024-05-28, 0d
    Relationship between BNN and Bayesian Inference: done, 2024-05-28, 2024-06-04
    WR - 20240604: done, milestone, 2024-06-04, 0d
    Bayesian CNN on simple image segmentation: activate, 2024-06-04, 14d
    Term 3 Progress Report: done, crit, milestone, 2024-06-10, 0d
    WR - 20240611: milestone, 2024-06-11, 0d
    WR - 20240618: milestone, 2024-06-18, 0d
    Bayesian CNN on MaSTr1325: 2024-06-18, 21d
    WR - 20240625: milestone, 2024-06-25, 0d
    WR - 20240702: milestone, 2024-07-02, 0d
    Term 4 Progress report: crit, milestone, 2024-07-08, 0d
    WR - 20240709: milestone, 2024-07-09, 0d


    section Testing
    Overall Testing and Parameter Adjustment: 2024-07-09, 2024-08-20
    Testing on Prediction Uncertainty: TPU, 2024-07-09, 15d
    WR - 20240716: milestone, 2024-07-16, 0d
    WR - 20240723: milestone, 2024-07-23, 0d
    Testing on Dataset Noise: TDN, after TPU, 15d
    WR - 20240730: milestone, 2024-07-30, 0d
    WR - 20240806: milestone, 2024-08-06, 0d
    Testing on Proir: TP, after TDN, 15d
    WR - 20240813: milestone, 2024-08-13, 0d
    WR - 20240820: milestone, 2024-08-20, 0d
    Testing Complement: crit, milestone, 2024-08-20, 0d

    section Thesis Writing
    Thesis Writing: 2024-08-09, 2024-09-02
    WR - 20240827: milestone, 2024-08-27, 0d
    Thesis Submission: crit, milestone, 2024-09-02, 0d
    Oral Examination Preparation : 2024-09-02, 2024-09-16
    WR - 20240903: milestone, 2024-09-03, 0d
    Oral Presentation Material Submission: crit, milestone, 2024-09-06, 0d
    Oral Examination: crit, milestone, 2024-09-16, 0d

Loading

Dataset

The instructions of downloading datasets are illistruted in the link.
The corresponding *.tar.gz files of datasets are provided as well in Dataset file.

Requirements

Conda environment conda

conda create -n <your-env-name> python=3.10  
conda activate <your-env-name>
pip install -r requirements.txt

Training & Testing

None-Bayes-SegNet

python main.py --epoch 200 --arch segnet --batch_size 4 --dataset MaSTr1325 --action train&test

Bayes-SegNet

python train.py --data-path MaSTr1325 --epoch 1000

Performances

Performance on MaSTr1325 dataset

Architecture Pr (%) Re (%) F1 (%)
Bayesian SegNet 81.2 97.8 87.8
SegNet 79.9 87.5 81.3
PSPNet 82.1 50.8 62.8
U-Net 10.2 88.6 18.3

Performance on OASIs dataset

Architecture Evaluation Dataset Type Pr (%) Re (%) F1 (%)
Bayesian SegNet OASIs 1 68.73 84.31 72.67
2 47.27 95.74 64.36
3 65.20 88.89 73.52
SegNet OASIs 1 28.27 65.89 33.93
2 1.69 97.17 3.32
3 10.09 98.97 17.82
SegNet SMD -- 31.2 76.3 44.3

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published