Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Tutorial for extraction efficiency of a collection of dipoles in a disc in cylindrical coordinates #2726

Merged
merged 10 commits into from
Jan 25, 2024

Conversation

oskooi
Copy link
Collaborator

@oskooi oskooi commented Nov 24, 2023

Closes #2690.

This script seems to be working and generates the radiation pattern below. The extraction efficiency computed from this radiation pattern is 0.9569.

disc_dipoles_radiation_pattern

@oskooi oskooi force-pushed the disc_ext_eff_tutorial branch from e523afe to 2174b16 Compare November 30, 2023 06:51
@oskooi oskooi marked this pull request as ready for review November 30, 2023 06:52
@stevengj
Copy link
Collaborator

The fact that your vacuum radiation patterns are not independent of the location of the source looks wrong.

Not sure what the bug is — maybe you should have summed E and H over m before computing the E*xH power?

@oskooi
Copy link
Collaborator Author

oskooi commented Dec 8, 2023

Here are three radiation patterns scaled by $s(r) = 1/(2(r/r_0)^2$ for an $E_r$ dipole source at $\lambda = 0.45$ μm in vacuum at three different $r$ positions: $\approx$ 0, 0.5 μm, and 1.0 μm. Also included is the radiation pattern for a circularly polarized electric dipole (consisting of $E_r + jE_{\phi})$ obtained from antenna theory: $cos^2(\theta) + 1$.

There is good agreement in the radiation pattern between the theoretical result and the simulation for the dipole at $\approx$ 0. However, there are still noticeable differences in the radiation patterns for dipoles at $r > 0$ even after (1) increasing the resolution to 200 pixels/μm, (2) reducing the threshold flux used to truncate the Fourier-series expansion (i.e., including more terms), and (3) reducing the field tolerance to 1e-9 in the termination criteria meep.stop_when_fields_decayed. I also tried increasing the PML thickness and the size of the cell to no avail.

image

Schematic of the simulation cell.

vacuum_cyl_plot2D

@stevengj
Copy link
Collaborator

stevengj commented Dec 8, 2023

Would be good to overlay the analytical formula (for a circularly polarized source).

(Given the formula for the field of a dipole, add it to its rotation by 90° multiplied by i to get the field of a circularly polarized dipole. Then plug in the Poynting flux. Someone has probably worked it out already.)

@stevengj
Copy link
Collaborator

stevengj commented Dec 8, 2023

A good check is that summing the fields over m and then computing the Poynting flux ExH* should give the same answer as computing the Poynting flux and then summing over m.

@oskooi
Copy link
Collaborator Author

oskooi commented Dec 11, 2023

A good check is that summing the fields over m and then computing the Poynting flux ExH* should give the same answer as computing the Poynting flux and then summing over m.

The procedure for summing the fields first and then computing the Poynting flux is described in Tutorial/Nonaxisymmetric Dipoles Sources:

image

Note that in Step 2, the $|m| > 0$ terms in the expansion involve taking the real part of the fields. Also, the fields $E_{tot}$ and $H_{tot}$ and flux $P(\theta, \phi)$ are always computed at $\phi = 0$.

Using this approach, the radiation pattern of the dipoles at $r > 0$ is significantly different than the alternative approach (shown previously) of summing the Poynting flux of the individual $m$ calculations:

image

The same simulation parameters (resolution, field decay threshold for termination, and flux threshold for truncating the Fourier-series expansion) as before were used. For the $r = 0.5 \mu m$ case, there are $M + 1 = 14$ terms in the expansion, and for $r = 1.0 \mu m$ there are $M + 1 = 23$ terms.

@oskooi
Copy link
Collaborator Author

oskooi commented Dec 14, 2023

There is a subtlety in the calculation of the radiation pattern $P(\theta)$ based on summing the results for the Poynting flux $P_{r,m}$ and $P_{z,m}$ using the Fourier-series expansion over $m$. There are two ways to obtain $P(\theta)$ as shown below. The plots of the radiation pattern shown above were obtained using the method on the left. For comparison, I also tried the method on the right. The results were identical. This is expected because of the orthogonality in the flux for $P_r$, $P_z$, and $P(\theta)$ for different $m$.

Screenshot 2023-12-17 at 08 46 01


flux_r = np.real(e_field[:, 1] * h_field[:, 2] - e_field[:, 2] * h_field[:, 1])
flux_z = np.real(e_field[:, 0] * h_field[:, 1] - e_field[:, 1] * h_field[:, 0])
flux_rz = np.sqrt(np.square(flux_r) + np.square(flux_z))
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
flux_rz = np.sqrt(np.square(flux_r) + np.square(flux_z))
flux_rz = flux_r * np.sin(theta_rad) + flux_z * np.cos(theta_rad)

you should be taking the dot product with here. (Though I think it should give the same results, since at a large radius the flux should be almost all radially outwards, I think?)

Copy link
Collaborator Author

@oskooi oskooi Dec 20, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I verified that this suggested change does not affect the results.

@oskooi
Copy link
Collaborator Author

oskooi commented Dec 20, 2023

Would be good to overlay the analytical formula (for a circularly polarized source).

I have added the radiation pattern for a circularly polarized electric dipole obtained using antenna theory to the plot in the previous comment. There is good agreement between the theoretical result and the simulated radiation pattern for the dipole at $r_0 \approx 0$. This confirms that the simulation is set up correctly.

@oskooi
Copy link
Collaborator Author

oskooi commented Dec 26, 2023

edit (1/8/2024): disregard. Using accurate_fields_near_cyl_origin=True and smaller Courant had no effect on the results.

It seems that to obtain agreement in the radiation pattern in vacuum for dipoles at $r > 0$ it is necessary to set accurate_fields_near_cyl_origin to True when performing the Fourier-series expansion for terms with $|m| > 1$. Also, as described in #2644, the Courant factor needs to be made smaller with $m$.

These two modifications are:

    if abs(m) > 1:
        accurate_fields_near_cylorigin = True
        Courant = 1 / (abs(m) + 1)
    else:
        accurate_fields_near_cylorigin = False
        Courant = 0.5

With these changes, the agreement in the radiation pattern is noticeably improved compared to the original result.

image

@oskooi
Copy link
Collaborator Author

oskooi commented Jan 15, 2024

For debugging purposes, here is the script I used to generate the radiation patterns (shown above) for a dipole in vacuum at $r > 0$ using a Fourier-series expansion of the fields via $e^{im\phi}$.

"""Radiation pattern of a dipole in vacuum in cylindrical coordinates."""

import math

import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import meep as mp
import numpy as np


RESOLUTION_UM = 100
WAVELENGTH_UM = 1.0
NUM_FARFIELD_PTS = 200
FARFIELD_RADIUS = 1e6 * WAVELENGTH_UM
DEBUG_OUTPUT = False

farfield_angles = np.linspace(0, 0.5 * math.pi, NUM_FARFIELD_PTS)


def plot_radiation_pattern_polar(radiation_pattern: np.ndarray):
    """Plots the radiation pattern in polar coordinates.                                                          
                                                                                                                  
    The angles increase clockwise with zero at the pole (+z direction)                                            
    and π/2 at the equator (+r direction).                                                                        
                                                                                                                  
    Args:                                                                                                         
        radiation_pattern: radial flux of the far fields in polar coordinates.                                    
    """
    radiation_pattern_theory = ((np.cos(farfield_angles)**2 + 1) *
				radiation_pattern[0] * 0.5)

    fig, ax = plt.subplots(subplot_kw={"projection": "polar"}, figsize=(6,6))
    ax.plot(
        farfield_angles,
        radiation_pattern,
        "b-",
        label="Meep"
    )
    ax.plot(
        farfield_angles,
        radiation_pattern_theory,
        "r-",
        label="theory"
    )
    ax.set_theta_direction(-1)
    ax.set_theta_offset(0.5 * math.pi)
    ax.set_thetalim(0, 0.5 * math.pi)
    ax.grid(True)
    ax.set_rlabel_position(22)
    ax.set_ylabel("radial flux (a.u.)")
    ax.set_title("radiation pattern in polar coordinates")
    ax.legend()

    if mp.am_master():
	fig.savefig(
            "vacuum_cyl_radpattern.png",
            dpi=150,
            bbox_inches="tight",
	)


def radiation_pattern_flux(radiation_pattern: np.ndarray) -> float:
    """Computes the Poynting flux from the radiation pattern."""

    dtheta = 0.5 * math.pi / (NUM_FARFIELD_PTS - 1)
    dphi = 2 * math.pi
    flux_far = (np.sum(radiation_pattern * np.sin(farfield_angles)) *
                FARFIELD_RADIUS * FARFIELD_RADIUS * dtheta * dphi)

    # We need to multiply the result by two because this integral is only                                         
    # for θ in [0, 90°] whereas we need it to be [0, 180°].                                                       
    flux_far *= 2

    return flux_far


def radiation_pattern_from_farfields(
        sim: mp.Simulation, n2f_mon: mp.DftNear2Far
) -> np.ndarray:
    """Computes the radiation pattern from the far fields.                                                        
                                                                                                                  
    Args:                                                                                                         
        sim: a `Simulation` object.                                                                               
        n2f_mon: a `DftNear2Far` object returned by `Simulation.add_near2far`.                                    
                                                                                                                  
    Returns:                                                                                                      
        Array of radial Poynting flux, one for each point on the circumference                                    
        of a quarter circle with angular range of [0, π/2]. 0 rad is the +z                                       
        direction and π/2 is +r.                                                                                  
    """
    e_field = np.zeros((NUM_FARFIELD_PTS, 3), dtype=np.complex128)
    h_field = np.zeros((NUM_FARFIELD_PTS, 3), dtype=np.complex128)
    for n in range(NUM_FARFIELD_PTS):
        ff = sim.get_farfield(
            n2f_mon,
            mp.Vector3(
                FARFIELD_RADIUS * math.sin(farfield_angles[n]),
                0,
                FARFIELD_RADIUS * math.cos(farfield_angles[n])
            )
        )
        e_field[n, :] = [ff[j] for j in range(3)]
        h_field[n, :] = [ff[j + 3] for j in range(3)]

    x_flux = (np.real(np.conj(e_field[:, 1]) * h_field[:, 2] -
                      np.conj(e_field[:, 2]) * h_field[:, 1]))
    z_flux = (np.real(np.conj(e_field[:, 0]) * h_field[:, 1] -
                      np.conj(e_field[:, 1]) * h_field[:, 0]))
    r_flux = np.sqrt(np.square(x_flux) + np.square(z_flux))

    return r_flux


def point_dipole_in_vacuum(rpos_um: float, m: int) -> np.ndarray:
    pml_um = 1.0
    padding_um = 10.0
    size_r = padding_um + pml_um
    size_z = pml_um + padding_um + pml_um
    cell_size = mp.Vector3(size_r, 0, size_z)
    pml_layers = [mp.PML(thickness=pml_um)]

    frequency = 1 / WAVELENGTH_UM

    src_pt = mp.Vector3(rpos_um, 0, 0)
    sources = [
        mp.Source(
            src=mp.GaussianSource(
                frequency, fwidth=0.2 * frequency, cutoff=10.0
            ),
            component=mp.Er,
            center=src_pt,
        )
    ]

    sim = mp.Simulation(
        resolution=RESOLUTION_UM,
        cell_size=cell_size,
        dimensions=mp.CYLINDRICAL,
        sources=sources,
        boundary_layers=pml_layers,
        m=m,
        force_complex_fields=True,
    )

    flux_mon = sim.add_flux(
        frequency,
        0,
        1,
        mp.FluxRegion(
            center=mp.Vector3(
                0.5 * (size_r - pml_um), 0, 0.5 * size_z - pml_um
            ),
            size=mp.Vector3(size_r - pml_um, 0, 0)
        ),
        mp.FluxRegion(
            center=mp.Vector3(size_r - pml_um, 0, 0),
            size=mp.Vector3(0, 0, size_z - 2 * pml_um),
        ),
        mp.FluxRegion(
            center=mp.Vector3(
                0.5 * (size_r - pml_um), 0, -0.5 * size_z + pml_um
            ),
            size=mp.Vector3(size_r - pml_um, 0, 0),
            weight=-1.0,
        ),
    )

    n2f_mon = sim.add_near2far(
        frequency,
        0,
        1,
        mp.Near2FarRegion(
            center=mp.Vector3(
                0.5 * (size_r - pml_um), 0, 0.5 * size_z - pml_um
            ),
            size=mp.Vector3(size_r - pml_um, 0, 0)
        ),
        mp.Near2FarRegion(
            center=mp.Vector3(size_r - pml_um, 0, 0),
            size=mp.Vector3(0, 0, size_z - 2 * pml_um),
        ),
        mp.Near2FarRegion(
            center=mp.Vector3(
                0.5 * (size_r - pml_um), 0, -0.5 * size_z + pml_um
            ),
            size=mp.Vector3(size_r - pml_um, 0, 0),
            weight=-1.0,
        ),
    )

    if DEBUG_OUTPUT:
        fig, ax = plt.subplots()
        sim.plot2D(ax=ax)
        if mp.am_master():
            fig.savefig(
                "cyl_simulation_layout.png", dpi=150, bbox_inches="tight"
            )

    sim.run(
        until_after_sources=mp.stop_when_fields_decayed(
            25.0, mp.Er, src_pt, 1e-8
        )
    )

    flux_near = mp.get_fluxes(flux_mon)[0]

    radiation_pattern = radiation_pattern_from_farfields(sim, n2f_mon)
    flux_far = radiation_pattern_flux(radiation_pattern)

    err = abs(flux_far - flux_near) / flux_near

    print(
        f"flux-m:, {rpos_um}, {m}, "
        f"{flux_near:.6f} (near), {flux_far:.6f} (far), {err:.6f} (error)"
    )

    return radiation_pattern


if __name__ == "__main__":
    # An Er source at r = 0 must be slightly offset due to #2704.                                                 
    # Requires a single simulation with m = ±1.                                                                   
    rpos_um = 1.5 / RESOLUTION_UM
    m = 1
    radiation_pattern = point_dipole_in_vacuum(rpos_um, m)

    plot_radiation_pattern_polar(
        FARFIELD_RADIUS**2 * radiation_pattern
    )

    if mp.am_master():
        fname = f'vacuum_cyl_rpos{rpos_um}_res{RESOLUTION_UM}.npz'

        np.savez(
            fname,
            m=m,
            resolution=RESOLUTION_UM,
            wavelength_um=WAVELENGTH_UM,
            num_farfield_pts=NUM_FARFIELD_PTS,
            farfield_angles=farfield_angles,
            farfield_radius=FARFIELD_RADIUS,
            radiation_pattern=radiation_pattern
        )

    # An Er source at r > 0 requires Fourier-series expansion of exp(imϕ).                                        
    rpos_um = 0.19
    m = 0
    flux_max = 0
    flux_thresh = 1e-2
    radiation_patterns = np.zeros(NUM_FARFIELD_PTS)
    radiation_pattern_total = np.zeros(NUM_FARFIELD_PTS)
    while True:
        radiation_pattern = point_dipole_in_vacuum(rpos_um, m)
        radiation_pattern_total += radiation_pattern * (1 if m == 0 else 2)

        if m == 0:
            radiation_patterns = radiation_pattern[:, None]
        else:
            radiation_patterns = np.hstack(
                (radiation_patterns, radiation_pattern[:, None])
            )

        flux_far = radiation_pattern_flux(radiation_pattern)
        if flux_far > flux_max:
            flux_max = flux_far

        if m > 0 and (flux_far / flux_max) < flux_thresh:
            break
        else:
            m += 1

    plot_radiation_pattern_polar(
        FARFIELD_RADIUS**2 * radiation_pattern_total
    )

    if mp.am_master():
        fname = f'vacuum_cyl_rpos{rpos_um}_res{RESOLUTION_UM}.npz'

        np.savez(
            fname,
            num_m=m,
            resolution=RESOLUTION_UM,
            wavelength_um=WAVELENGTH_UM,
            num_farfield_pts=NUM_FARFIELD_PTS,
            farfield_angles=farfield_angles,
            farfield_radius=FARFIELD_RADIUS,
            radiation_patterns=radiation_patterns
        )

@oskooi
Copy link
Collaborator Author

oskooi commented Jan 16, 2024

I figured out why the radiation pattern for an $E_r$ point-dipole current source in vacuum computed at various positions for $r &gt; 0$ is not equivalent to the analytic result. It has to do with the way we are combining the results from multiple independent simulations using the Fourier-series expansion of the fields with $e^{im\phi}$.

Specifically, in Tutorial/Nonaxisymmetric Dipole Sources, the Fourier-series expansion is described as:

image

This approach produces incorrect results as shown above in the plots of the radiation pattern at various source positions. In order to produce the correct result which matches the radiation pattern from antenna theory, the Fourier-series expansion must be changed to:

image

Note: the $m=0$ term has twice the weight of the $m \neq 0$ terms. This is the exact opposite of what we have been using.

This requires changing a single line in the script above:

radiation_pattern_total += radiation_pattern * (1 if m == 0 else 2)

to

radiation_pattern_total += radiation_pattern * (2 if m == 0 else 1)

With this change, the radiation pattern at e.g. $r = 0.35$ μm matches the analytic result as expected.

vacuum_cyl_radpattern_weights_rpos0 35_res100

@oskooi oskooi force-pushed the disc_ext_eff_tutorial branch from d90ed71 to 62f3402 Compare January 18, 2024 06:04
@oskooi
Copy link
Collaborator Author

oskooi commented Jan 18, 2024

With the correction described in the previous comment to the way the Fourier-series expansion for $e^{im\phi}$ is computed, it is now possible to demonstrate that the radiation pattern of a dipole in vacuum at different positions with $r &gt; 0$ is equivalent. This involves using the scaling factor $s(r) = (r_0 / r)^2$ for a dipole at position $r$ where $r_0$ is the dipole location at the origin (= 1.5 / resolution).

The simulation script as well as the description in the text of the tutorial have been updated with these changes.

vacuum_cyl_radpattern_scale_factor

…avity modes with small decay rates for certain dipole configurations
@stevengj
Copy link
Collaborator

I think the issue is that, as an optimization, Meep only simulates the real parts of the field for m=0 (where the real and imaginary parts are decoupled), which effectively halves the current source for the m=0. To compensate, you could either use force_complex_fields=True for the m=0 simulation or multiply the m=0 power by a factor of 4. (This corresponds to 2x the empirical formula you wrote above.)

@stevengj
Copy link
Collaborator

For the emission at 90°, you might want to make sure that greencyl is doing the angular integral accurately. e.g. force it to use more angular points by setting N0 = 128 at https://github.com/NanoComp/meep/blob/4f67cb69592e7899877cabd3dc15dce27ee33f95/src/near2far.cpp#L291C5-L291C20

@stevengj
Copy link
Collaborator

If you want to validate this, an ideal tool here would be SCUFF, which should be very efficient for this type of problem.

@stevengj
Copy link
Collaborator

Note that a dielectric disk will have very high Q resonance, especially at higher frequencies. This might cause the fields to decay very slowly if you have a broadband source. If these aren't the frequencies of interest, then you might want to either (a) not excite the resonances by using a narrow-band source or (b) use stop_when_dft_decayed (or whatever it's called) to only look at the frequency components of interest when stopping the simulation. Or both.

@oskooi
Copy link
Collaborator Author

oskooi commented Jan 19, 2024

For the emission at 90°, you might want to make sure that greencyl is doing the angular integral accurately. e.g. force it to use more angular points by setting N0 = 128

Increasing N0 from 4 (currently) to 128 considerably reduces the discretization artifacts in the radiation pattern. The figure below shows these artifacts near $\theta \approx 90^\circ$ for N0 = 4 (blue line) but not for N0 = 128 (red) which is much smoother and matches the theoretical result at all angles.

Based on these results, it might therefore be useful to make N0 a user parameter in the routines get_farfield and get_farfields rather than a hard-coded internal value.

vacuum_cyl_radpattern_greencyl_num_points

@oskooi
Copy link
Collaborator Author

oskooi commented Jan 19, 2024

I think the issue is that, as an optimization, Meep only simulates the real parts of the field for m=0 (where the real and imaginary parts are decoupled), which effectively halves the current source for the m=0. To compensate, you could either use force_complex_fields=True for the m=0 simulation or multiply the m=0 power by a factor of 4. (This corresponds to 2x the empirical formula you wrote above.)

As suggested, setting force_complex_fields=True in the Simulation constructor for the m = 0 run fixes the issue. With this change, using the existing expression for the Fourier-series expansion involving a weight of 1 for the results of the m = 0 run and 2 for the m ≠ 0 runs produces identical radiation patterns for dipoles at $r &gt; 0$ in vacuum. Obtaining this agreement requires using the scaling factor $s(r) = 0.5(r_0/r)^2$.

vacuum_cyl_radpattern_scale_factor

@codecov-commenter
Copy link

Codecov Report

All modified and coverable lines are covered by tests ✅

Comparison is base (4f67cb6) 74.06% compared to head (098ff7a) 73.78%.
Report is 1 commits behind head on master.

❗ Your organization needs to install the Codecov GitHub app to enable full functionality.

Additional details and impacted files
@@            Coverage Diff             @@
##           master    #2726      +/-   ##
==========================================
- Coverage   74.06%   73.78%   -0.29%     
==========================================
  Files          18       18              
  Lines        5399     5421      +22     
==========================================
+ Hits         3999     4000       +1     
- Misses       1400     1421      +21     

see 1 file with indirect coverage changes

Co-authored-by: Steven G. Johnson <stevenj@mit.edu>
Co-authored-by: Steven G. Johnson <stevenj@mit.edu>
@stevengj stevengj merged commit fde5d06 into NanoComp:master Jan 25, 2024
5 checks passed
@oskooi oskooi deleted the disc_ext_eff_tutorial branch January 25, 2024 20:54
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

LED tutorial in cylindrical coordinates
3 participants