-
Notifications
You must be signed in to change notification settings - Fork 163
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Fix the maximal grid dimension in prefill planning with CUDA graphs #639
Merged
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
yzh119
reviewed
Nov 25, 2024
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks for doing this and I also expect this PR to benefit speculative decoding as well.
Left some comments for readability.
nandor
force-pushed
the
nandor/prefill
branch
from
November 25, 2024 14:14
93155ca
to
46e8cde
Compare
Previously, differences in the contents of qo_indptr could lead to block sizes varying across CUDA graph invocations, leading to illegal memory accessed. This PR alters the calculation of the block size to find a reasonable maximum based on the longest sequence. The maximum token count is fixed in `plan` on the `Python` side and passed along to `scheduler.cuh` to derive the other parameters.
nandor
force-pushed
the
nandor/prefill
branch
from
November 25, 2024 18:35
46e8cde
to
d89b23e
Compare
yzh119
approved these changes
Nov 25, 2024
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM, much appreciated!
yzh119
added a commit
that referenced
this pull request
Dec 17, 2024
🤖 I have created a release *beep* *boop* --- ## [0.2.0](v0.1.6...v0.2.0) (2024-12-17) [Release Blog](https://flashinfer.ai/2024/12/16/flashinfer-v02-release.html). ### Features * add `rotary_dim` argument to rope APIs for partial apply rope ([#599](#599)) ([eb9bc71](eb9bc71)) * add a `use_softmax` field in variant class ([#533](#533)) ([d81af97](d81af97)) * add an option `non_blocking` to plan function ([#622](#622)) ([560af6f](560af6f)) * add gemma_rmsnorm and gemma_fused_add_rmsnorm ([#477](#477)) ([1a6b17e](1a6b17e)) * add group size 3 to GQA decode dispatch ([#558](#558)) ([6227562](6227562)) * add JIT compilation support for FA3 templates ([#672](#672)) ([d4e8d79](d4e8d79)) * allow the cascade kernels to be executed using varying sequence lenghts ([#627](#627)) ([92ac440](92ac440)) * CUDAGraph compatibility of multi-level cascade inference APIs ([#586](#586)) ([2332e8a](2332e8a)) * fix the maximal grid dimension in prefill planning with CUDA graphs ([#639](#639)) ([86ca89a](86ca89a)) * improve the precision of the FusedAddRMSNormKernel function ([#587](#587)) ([c7dc921](c7dc921)) * JIT compilation ([#507](#507)) ([3613a5b](3613a5b)) * modify group-gemm stage number ([#497](#497)) ([52dab1d](52dab1d)) * non-contiguous query with paged kv cache ([#553](#553)) ([89f2c4a](89f2c4a)) * pass a dynamic token count to the cascade kernels ([#635](#635)) ([5fe9f7d](5fe9f7d)) * simplify prefill JIT compilation ([#605](#605)) ([fe4f898](fe4f898)) * specify gemm backend ([#648](#648)) ([0cc1a51](0cc1a51)) * support cached cos/sin in rope APIs ([#585](#585)) ([83e541d](83e541d)) * support huggingface transformer style rope interface ([#568](#568)) ([4f40420](4f40420)) * support sm90 cutlass group gemm ([#509](#509)) ([794bdda](794bdda)) * torch custom_op fix for rope ([#569](#569)) ([3e104bc](3e104bc)) * torch custom_op support: norm ([#552](#552)) ([f6e0010](f6e0010)) * torch.compile and custom_op support ([#554](#554)) ([9bf916f](9bf916f)) * warmup for jit kernel tests ([#629](#629)) ([8f5f349](8f5f349)) ### Bug Fixes * AOT compiler flags on non-sm90 ([#522](#522)) ([0aa4726](0aa4726)) * batch decode kernel redundant store output to gmem ([#505](#505)) ([90e42a7](90e42a7)) * compatible with torch 2.2 ([#478](#478)) ([ac41d1b](ac41d1b)) * #452 ([b53a46f](b53a46f)) * remove redundant load ([#495](#495)) ([2de16b0](2de16b0)) * update bmm fp8 test ([#487](#487)) ([45eac04](45eac04)) ### Performance Improvements * accelerate JIT compilation speed ([#618](#618)) ([eaf73fd](eaf73fd)) * Dense and sparse customizable flashattention-3 template ([#667](#667)) ([51236c9](51236c9)) * fix prefill kernel performance degradation (step 1) ([#602](#602)) ([595cf60](595cf60)) * fix the performance issue of `append_paged_kv_cache` ([#588](#588)) ([e15f7c9](e15f7c9)) * improve parallelism in RoPE with pos_ids ([#609](#609)) ([ff05155](ff05155)) * improve plan performance by using non-blocking memcpy ([#547](#547)) ([41ebe6d](41ebe6d)) * reduce the read and write of shared memory in the FusedAddRMSNormKernel ([#592](#592)) ([2043ca2](2043ca2)) * reduce total_num_tiles_q by one ([#644](#644)) ([553ace5](553ace5)) * remove unnecessary contiguous operation in block sparse attention ([#561](#561)) ([7a7ad46](7a7ad46)) * speedup jit compilation of prefill attention kernels ([#632](#632)) ([a059586](a059586)) * use cuda-core implemention for io-bound block-sparse attention ([#560](#560)) ([3fbf028](3fbf028)) --- This PR was generated with [Release Please](https://github.com/googleapis/release-please). See [documentation](https://github.com/googleapis/release-please#release-please). --------- Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: Zihao Ye <expye@outlook.com>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Previously, differences in the contents of qo_indptr could lead to block sizes varying across CUDA graph invocations, leading to illegal memory accessed.
This PR alters the calculation of the block size to find a reasonable maximum based on the longest sequence.
The maximum token count is fixed in
plan
on thePython
side and passed along toscheduler.cuh
to derive the other parameters.While this ensures correctness under CUDA graphs, when CUDA graphs are enabled split-kv is now always used, potentially degrading performance if CUDA graphs are to be used with fixed
qo_indptr
. However, for varyingqo_indptr
, CUDA graphs deliver 4x performance improvements for prefill on models such as Llama 3.2-1B.