Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Reduce total_num_tiles_q by one #644

Merged
merged 1 commit into from
Dec 4, 2024
Merged

Conversation

nandor
Copy link
Contributor

@nandor nandor commented Dec 4, 2024

The bound can be reduced by one to slightly decrease workspace memory usage.

Copy link
Collaborator

@yzh119 yzh119 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thank you for the PR, it's a little bit hard for me to understand it at first glance so I ask ChatGPT to generate a proof (https://chatgpt.com/share/67502c81-dd94-800c-aa83-16060d3385b7) for reference.

TLDR:

sum(ceil_div(q_len[i], cta_tile_q)) < sum((q_len[i] / cta_tile_q) + 1) = batch_size + total_num_rows / cta_tile_q <= ceil_div(total_num_rows, cta_tile_q) + batch_size
->
sum(ceil_div(q_len[i], cta_tile_q)) < ceil_div(total_num_rows, cta_tile_q) + batch_size

Note that both lhs and rhs are integers, which implies:

sum(ceil_div(q_len[i], cta_tile_q)) <= ceil_div(total_num_rows, cta_tile_q) + batch_size - 1

@yzh119
Copy link
Collaborator

yzh119 commented Dec 4, 2024

I feel like these bounds

plan_info.v_offset = float_allocator.aligned_alloc_offset(
num_qo_heads * padded_batch_size * cta_tile_q * head_dim * sizeof_dtype_o, 16,
"batch_prefill_tmp_v");
plan_info.s_offset = float_allocator.aligned_alloc_offset(
num_qo_heads * padded_batch_size * cta_tile_q * sizeof(float), 16, "batch_prefill_tmp_s");

could be greatly improved especially for chunked prefill case, we can leave them for future work.

@yzh119 yzh119 merged commit 553ace5 into flashinfer-ai:main Dec 4, 2024
yzh119 added a commit that referenced this pull request Dec 17, 2024
🤖 I have created a release *beep* *boop*
---


##
[0.2.0](v0.1.6...v0.2.0)
(2024-12-17)

[Release
Blog](https://flashinfer.ai/2024/12/16/flashinfer-v02-release.html).

### Features

* add `rotary_dim` argument to rope APIs for partial apply rope
([#599](#599))
([eb9bc71](eb9bc71))
* add a `use_softmax` field in variant class
([#533](#533))
([d81af97](d81af97))
* add an option `non_blocking` to plan function
([#622](#622))
([560af6f](560af6f))
* add gemma_rmsnorm and gemma_fused_add_rmsnorm
([#477](#477))
([1a6b17e](1a6b17e))
* add group size 3 to GQA decode dispatch
([#558](#558))
([6227562](6227562))
* add JIT compilation support for FA3 templates
([#672](#672))
([d4e8d79](d4e8d79))
* allow the cascade kernels to be executed using varying sequence
lenghts ([#627](#627))
([92ac440](92ac440))
* CUDAGraph compatibility of multi-level cascade inference APIs
([#586](#586))
([2332e8a](2332e8a))
* fix the maximal grid dimension in prefill planning with CUDA graphs
([#639](#639))
([86ca89a](86ca89a))
* improve the precision of the FusedAddRMSNormKernel function
([#587](#587))
([c7dc921](c7dc921))
* JIT compilation
([#507](#507))
([3613a5b](3613a5b))
* modify group-gemm stage number
([#497](#497))
([52dab1d](52dab1d))
* non-contiguous query with paged kv cache
([#553](#553))
([89f2c4a](89f2c4a))
* pass a dynamic token count to the cascade kernels
([#635](#635))
([5fe9f7d](5fe9f7d))
* simplify prefill JIT compilation
([#605](#605))
([fe4f898](fe4f898))
* specify gemm backend
([#648](#648))
([0cc1a51](0cc1a51))
* support cached cos/sin in rope APIs
([#585](#585))
([83e541d](83e541d))
* support huggingface transformer style rope interface
([#568](#568))
([4f40420](4f40420))
* support sm90 cutlass group gemm
([#509](#509))
([794bdda](794bdda))
* torch custom_op fix for rope
([#569](#569))
([3e104bc](3e104bc))
* torch custom_op support: norm
([#552](#552))
([f6e0010](f6e0010))
* torch.compile and custom_op support
([#554](#554))
([9bf916f](9bf916f))
* warmup for jit kernel tests
([#629](#629))
([8f5f349](8f5f349))


### Bug Fixes

* AOT compiler flags on non-sm90
([#522](#522))
([0aa4726](0aa4726))
* batch decode kernel redundant store output to gmem
([#505](#505))
([90e42a7](90e42a7))
* compatible with torch 2.2
([#478](#478))
([ac41d1b](ac41d1b))
* #452
([b53a46f](b53a46f))
* remove redundant load
([#495](#495))
([2de16b0](2de16b0))
* update bmm fp8 test
([#487](#487))
([45eac04](45eac04))


### Performance Improvements

* accelerate JIT compilation speed
([#618](#618))
([eaf73fd](eaf73fd))
* Dense and sparse customizable flashattention-3 template
([#667](#667))
([51236c9](51236c9))
* fix prefill kernel performance degradation (step 1)
([#602](#602))
([595cf60](595cf60))
* fix the performance issue of `append_paged_kv_cache`
([#588](#588))
([e15f7c9](e15f7c9))
* improve parallelism in RoPE with pos_ids
([#609](#609))
([ff05155](ff05155))
* improve plan performance by using non-blocking memcpy
([#547](#547))
([41ebe6d](41ebe6d))
* reduce the read and write of shared memory in the
FusedAddRMSNormKernel
([#592](#592))
([2043ca2](2043ca2))
* reduce total_num_tiles_q by one
([#644](#644))
([553ace5](553ace5))
* remove unnecessary contiguous operation in block sparse attention
([#561](#561))
([7a7ad46](7a7ad46))
* speedup jit compilation of prefill attention kernels
([#632](#632))
([a059586](a059586))
* use cuda-core implemention for io-bound block-sparse attention
([#560](#560))
([3fbf028](3fbf028))

---
This PR was generated with [Release
Please](https://github.com/googleapis/release-please). See
[documentation](https://github.com/googleapis/release-please#release-please).

---------

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Zihao Ye <expye@outlook.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants