Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[GPU] Fix dynamic loop's not matched issue during multiple shapes are inferenced #22806

Conversation

kelvinchoi-intel
Copy link
Contributor

@kelvinchoi-intel kelvinchoi-intel commented Feb 13, 2024

Details:

  • Fix the issue which second infer with updated shape in dynamic loop doesn't update sliced layout.
  • Fix the issue that the optimized reshape doesn't reinterpret output memory in update_output_layout()

Tickets:

  • 122739
  • 131544

@kelvinchoi-intel kelvinchoi-intel requested review from a team as code owners February 13, 2024 07:48
@github-actions github-actions bot added the category: GPU OpenVINO GPU plugin label Feb 13, 2024
@kelvinchoi-intel kelvinchoi-intel force-pushed the enable_dynamic_loop_multiple_infer_with_various_shape branch 2 times, most recently from 9bad2e9 to 1d1c1d3 Compare February 14, 2024 01:19
@kelvinchoi-intel kelvinchoi-intel force-pushed the enable_dynamic_loop_multiple_infer_with_various_shape branch 3 times, most recently from a65e9e4 to 1a555ec Compare February 19, 2024 00:36
if (dyn_sliced_layout != dynamic_sliced_layout_mappings.end() &&
dyn_sliced_layout->second.is_dynamic()) {
updated_sliced_layout = dyn_sliced_layout->second;
}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What is the target case? Seems that outer mem is allocated, which means it is either of static shape or "bounded dynamic shape". Which case?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I am curious because why we need this dyn_sliced_layout mapping. Seems that it just holds original dynamic shape. Which means that it can be pulled from layout of program_node.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The target case:
-shape "chunks[-1, 1, -1]" -data_shape "chunks[32, 1, 80000][19, 1, 80000]"
Multiple infer with different shape is required for loop operation

In case sliced layout of loop is dynamic, the static shape is decided during first infer execution. But during 2nd infer, the sliced layout of loop is not updated. To update the sliced layout, the original dynamic shape info is needed at loop_inst::create_concat_memory_map().

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I agree with @yeonbok 's comment.
I think if you get the output layout from the program node, you don't need to use dynamic_sliced_layout_mappings to handle the original output pshape.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Updated to get the output layout from program node instead of saving dynamic shape

@kelvinchoi-intel kelvinchoi-intel force-pushed the enable_dynamic_loop_multiple_infer_with_various_shape branch from 1a555ec to e0ce33d Compare February 23, 2024 05:36
// if inner body intern_prim has no output memory because it has dynamic shape,
// calculate inner body intern_prim layout using concat_mem's layout.
auto updated_sliced_layout = sliced_layout.get_partial_shape();
OPENVINO_ASSERT(updated_sliced_layout[io_prim_map.axis].is_static() || num_iterations > 0,
"Not allowed dynamic dimension for axis when num_iteraiont is negative");

auto origin_input_pshape = body_network->get_input_node_output_layout(internal_id.pid).get_partial_shape();
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why don't you use the following sample code to get the original input partial shape without creating the additional get_input_node_output_layout?

Suggested change
auto origin_input_pshape = body_network->get_input_node_output_layout(internal_id.pid).get_partial_shape();
auto origin_input_pshape = body_network->get_primitive(internal_id.pid)->get_node_output_layout();

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

updated

_node->is_type<permute>() ||
_node->is_type<reshape>() ||
_node->is_type<reorder>() ||
_node->is_type<strided_slice>())) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is your case for optimized <gather|permute|reorder|strided_slice> + loop ?
In that case, what does it mean ignoring the below codes?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

In case input node of loop is reshape(or gather/permute/reorder/strided_slice) and 2nd inference has smaller output memory of the input node than 1st infer, the output mem is not updated at this time. This causes not-matched shape issue at the inner network of the loop.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is relevant to the "memory"s shape not the primitive's shape.
From your comment, loop is using input "memory" shape instead of input's primitive_impl shape. If that is the case, it is the problem. memory should be handled in the current way.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes, this was the WA code for the case.
I will find the way for loop to use input's primitive_impl shape instead of input "memory" shape as you pointed.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Deleted WA code and updated by reinterpreting with impl_shape.

@kelvinchoi-intel kelvinchoi-intel force-pushed the enable_dynamic_loop_multiple_infer_with_various_shape branch from e0ce33d to e753ac9 Compare February 28, 2024 10:38
@kelvinchoi-intel kelvinchoi-intel force-pushed the enable_dynamic_loop_multiple_infer_with_various_shape branch 2 times, most recently from ee8030a to 25d9b04 Compare March 8, 2024 01:08
ahnyoung-paul
ahnyoung-paul previously approved these changes Mar 11, 2024
@kelvinchoi-intel kelvinchoi-intel force-pushed the enable_dynamic_loop_multiple_infer_with_various_shape branch from 25d9b04 to 95b4b3c Compare March 12, 2024 00:11
@kelvinchoi-intel kelvinchoi-intel force-pushed the enable_dynamic_loop_multiple_infer_with_various_shape branch from 95b4b3c to 1a35c12 Compare March 12, 2024 08:31
// if inner body intern_prim has no output memory because it has dynamic shape,
// calculate inner body intern_prim layout using concat_mem's layout.
auto updated_sliced_layout = sliced_layout.get_partial_shape();
OPENVINO_ASSERT(updated_sliced_layout[io_prim_map.axis].is_static() || num_iterations > 0,
"Not allowed dynamic dimension for axis when num_iteraiont is negative");

auto origin_input_pshape = body_network->get_primitive(internal_id.pid)->get_node_output_layout().get_partial_shape();
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

minor, but I think you can just check the layout.is_dynamic(), no need to get partial shape.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Updated

// When input layout is changed or backedge_mem is null
// because output layout of body network is not calculated yet,
// Set backedge_mem to nullptr and update it after first execution.
body_network->set_input_data(back_edge.to, initial_mem);
body_network->set_input_data(back_edge.to, update_initial_memory);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

To me, this is not intuitive updating "initial memory". As from the original intention initial memory is a memory to initialize. Seems that this change is "if initial memory layout is not same as input layout (backedge.to layout, update initial memory". I am not understainding why we need to update "initial" memory.....

@ahnyoung-paul You approved this change, could you answer my question too?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The initial_mem of loop is set during first inference. If 2nd inference changes layout, layout of outer input node is updated. But inner input mem may not updated due to reuse memory. For this case, inner input memory layout needs to be updated by changed outer input layout.

I'll add comment on code to explain this.

Copy link
Contributor

@yeonbok yeonbok Mar 15, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Umm Now I have a new curiousity regarding the behavior for multiple iteration of body network.
(1) Outer network's input layout node (lets say A) is {1, 10} and allocated memory is {1, 20} due to the previous allocation. And the body network's "backedge.to" node's layout is "{1,10}"

(2) At first iteration of body network, current will set input A's memory to backedge.to node.
This is okay because it is actually initial memory.
(3) If the body network runs for 2nd iteration, expected behavior is to assign backedge.from to backedge.to. Because it is "backedge". However current change, it still assigns outer input node A's memory.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

In my thought initial impl of checking "from memory layout and outer input memory layout" to check whether the iteration is first or not, is wrong. We'll need another handle to chech whether to set outer mem or backedge.from mem to the backedge.to mem. @ahnyoung-paul Could you respond to this matter?

Copy link
Contributor

@ahnyoung-paul ahnyoung-paul Mar 15, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@yeonbok, The issued function (preprocess_backedge_memory) only works on preprocess memory functions that are called before running the inner network when the input layout is updated. So changing backedge memory is not related to this issue.

I think the main matter is that the network input layout is determined by the input memory layout, which might differ from the node's layout by memory reuse. If we have another way to set a layout of the input node in the network, I will suggest it. however, I can't find a way to set the layout without modifying the current network method. So I suggest interpreting the memory layout before setting the input layout of the inner network.
How about discussing it offline?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The reshape node as a outer input node of issued loop has updated impl layout but not-updated output mem buffer layout. On previous commit, this unmatched mem buffer layout was updated in loop ops.
But now current commit updates reshape's output mem buffer layout by reinterpret_buffer in update_output_memory() of reshape.

@kelvinchoi-intel kelvinchoi-intel force-pushed the enable_dynamic_loop_multiple_infer_with_various_shape branch 2 times, most recently from 1063302 to 2574f2c Compare March 14, 2024 08:53
@ahnyoung-paul ahnyoung-paul dismissed their stale review March 15, 2024 05:21

need more invesigation

@kelvinchoi-intel kelvinchoi-intel force-pushed the enable_dynamic_loop_multiple_infer_with_various_shape branch from 2574f2c to 463ed96 Compare March 15, 2024 11:18
@kelvinchoi-intel kelvinchoi-intel force-pushed the enable_dynamic_loop_multiple_infer_with_various_shape branch from 463ed96 to 4b91eb8 Compare March 18, 2024 00:37
@yeonbok yeonbok added this pull request to the merge queue Mar 18, 2024
Merged via the queue into openvinotoolkit:master with commit 7c6d29b Mar 18, 2024
92 checks passed
@yeonbok yeonbok deleted the enable_dynamic_loop_multiple_infer_with_various_shape branch March 18, 2024 18:56
Shubham-Sahoo added a commit to Shubham-Sahoo/openvino that referenced this pull request Mar 26, 2024
[Specification] MaxPool-14 and AvgPool-14 - new ceiling mode `CEIL_TORCH` (openvinotoolkit#22930)

 - Add specification for `MaxPool-14` and `AvgPool-14`
- They both introduce a new ceil mode:
`ov::op::RoundingType::CEIL_TORCH`
- The new ceiling mode does not allow the last pooling in a Dimension to
start in the padding area

- [Reference and
Core](openvinotoolkit#22796)
 - [Python API](openvinotoolkit#22966)
 - [PT FE](openvinotoolkit#23027)
- [Downgrade
transformations](openvinotoolkit#23381)

 - 131961

openvinotoolkit#18731

---------

Co-authored-by: Tomasz Jankowski <tomasz1.jankowski@intel.com>
Co-authored-by: Katarzyna Mitrus <katarzyna.mitrus@intel.com>

[TF FE] Support ApproximateEqual operation for TensorFlow (openvinotoolkit#23351)

 - *Adding operation support for ApproximateEqual operation*
 - *Addresses issue openvinotoolkit#22082 *

---------

Co-authored-by: Roman Kazantsev <roman.kazantsev@intel.com>

[OV JS] Expose export_model()/import_model() (openvinotoolkit#23366)

- Expose `compiledModel::export_model()`, a method to export a compiled
model to the binary data stream.
- Expose `core::import_model(model_file : Buffer, device_name : str)`, a
method to import a compiled model from a previously exported one.

 - *134820* *134818*

---------

Co-authored-by: Vishniakov Nikolai <nikolai.vishniakov@intel.com>

[core] Low precision element iterator and `u2, u3, u6` types (openvinotoolkit#23279)

 - Introduce new low precision types `u2`, `u3`, `u6`.
- Introduce `ov::element::Iterator` for low precision types like `u1,
u2, u3, u4, i4, u6`:
- Gives pointer like access to low precision values in Tensor,
containers etc.
- Can be used by STL algorithms to access data in unified algorithms for
data manipulation.
- Can be used in Constant, Convert operators to replace duplicate
implementations for accessing low precision data (bin-size reduction).
- Can be used for operator reference implementation or plugin if there
is no hardware specific solution.

 - [CVS-126998](https://jira.devtools.intel.com/browse/CVS-126998)
- Part of
[CVS-128024](https://jira.devtools.intel.com/browse/CVS-128024)

[DOCS]  Updated file (openvinotoolkit#23509)

 - *item1*
 - *...*

 - *ticket-id*

Add 'pad' operator support for ov::preprocess::PrePostProcessor (openvinotoolkit#23093)

 - Add 'pad' preprocessor operator
- openvinotoolkit#23068

 - [CVS-121548](https://jira.devtools.intel.com/browse/CVS-121548)

[API][AUTO] Fail to get PERF_COUNT from compiled_model (openvinotoolkit#23123)

 - *Fail to get PERF_COUNT from compiled_model*

 - *CVS-130349*

[GPU] Fix dynamic loop's not matched issue during multiple shapes are inferenced (openvinotoolkit#22806)

- *Fix the issue which second infer with updated shape in dynamic loop
doesn't update sliced layout.*
- *Fix the issue that the optimized reshape doesn't reinterpret output
memory in update_output_layout()*

 - *122739*
 - *131544*

[DOCS] Add docs about ignored subgraphs (openvinotoolkit#23435)

- Add documentation about `nncf.Subgraph`

 - 100999

[TRANSFORMATIONS] Fix Optional to match even with no inputs (openvinotoolkit#23471)

[TRANSFORMATIONS] Fix Optional to match even with no inputs

The Optional pattern type may create a wrong pattern to match if no
inputs are provided to the Optional node. If no inputs present to the
Optional type, it will not create an alternative branch(es) to check
against resulting in the incorrect matching.

Fix that by adding a check for the number of inputs being 0.

Do a minor refactoring/renaming for the readability purposes.

 CSV-133523

Signed-off-by: Andrii Staikov <andrii.staikov@intel.com>

---------

Signed-off-by: Andrii Staikov <andrii.staikov@intel.com>

Enable Paddle FastSpeech2 model (openvinotoolkit#23311)

 - *Enable Paddle FastSpeech2 model*
     - *fix issue in 'set_value'*
     - *add 'round' op*

 - *CVS-134638*

[Conformance Test] Fix cache test case failure for auto plugin (openvinotoolkit#23473)

- check if the blob size remains the same as it was during the initial
caching of the compiled model, rather than comparing it with a specified
number, such as 1 in this case.
- count the size of cached blobs after the model compilation is
completed on all HW plugin within AUTO plugin.

 - CVS-130395

[GPU] Remove unused formats (openvinotoolkit#23431)

+ Most of them are in onednn weights format.

 - *119476*

[CPU][ARM] Make f16 precision as default for CNN (openvinotoolkit#22839)

Remove mentioning of compatibility folder in mac docs (openvinotoolkit#23542)

 - *item1*
 - *...*

 - *ticket-id*

[TRANSFORMATIONS] Fix ReshapeAMatMul pattern to work with shared node as reshape input (openvinotoolkit#23535)

- *`ReshapeAMatMul` worked incorrect in case of using shared nodes as
reshape input*
 - *Fix: to reconnect reshape input to new `shape_of` pattern*

 - *[CVS-134625](https://jira.devtools.intel.com/browse/CVS-134625)*

[TF FE] Support complex tensors for Reciprocal operations (openvinotoolkit#23355)

- *Extended loader Reciprocal by propagating ComplexTypeMark from input
to output and to represent output complex type tensor as a
floating-point type tensor with an auxiliary dimension that concatenates
real and imaginary parts of complex tensor.*
- *Performed reciprocal for complex numbers.*
- *Wrapped the complex result with ComplexTypeMark and returned the
result*

 - openvinotoolkit#23234

---------

Co-authored-by: Roman Kazantsev <roman.kazantsev@intel.com>

[GPU] Fix SIMD for non supporting platforms (openvinotoolkit#23540)

 - Check is simd 8 is supported

 - *[CVS-133769](https://jira.devtools.intel.com/browse/CVS-133769)*

[PT FE] Fix typo and improve the error info. (openvinotoolkit#23507)

 - *Fix the typo of the code (then -> than)*
- *Improve the error info here, to let developer know the size of output
if the assertion fails.*

 - *No ticket id*

[PT FE] Fix sporadic issue in quantized tests (openvinotoolkit#23520)

 - *Relax quantized tests condition to remove sporadicity.*

 - *CVS-129734*

[GPU] Fixed not to set GATHER_AXIS_SHAPE_INFO_INDEX when input0 is static (openvinotoolkit#23548)

- This PR fixes `Gather` not to set GATHER_AXIS_SHAPE_INFO_INDEX when
input0 is static.
 - It enables some functional tests again.

Add test for CoreImpl::get_versions() (openvinotoolkit#23336)

Closes [23298](openvinotoolkit#23298)
- [CVS-132140](https://jira.devtools.intel.com/browse/CVS-132140)

---------

Co-authored-by: Oleg Pipikin <oleg.pipikin@intel.com>

[PT FE] Add ModuleExtension (openvinotoolkit#23536)

 - *Continuation of openvinotoolkit#22867*

 - *CVS-133733*

---------

Co-authored-by: Sergey Lyalin <sergey.lyalin@intel.com>

[api conformance] Fix batch/hetero plugins config (openvinotoolkit#23547)

 - *item1*
 - *...*

 - *ticket-id*

[Transformations] Added If operation to NMS path propagation for ignore negative indices in Gather (openvinotoolkit#23451)

 - *127874*

[TF FE] Test TextVectorization on white-space string input and Equal on empty string tensor (openvinotoolkit#23572)

**Details:** Test `tf.keras.TextVectorization` on white-space string
input and Equal on empty string tensor.

**Ticket:** 135749

---------

Signed-off-by: Kazantsev, Roman <roman.kazantsev@intel.com>

[PT FE] Make ModuleExtension  patching in independent function scope (openvinotoolkit#23584)

 - *Make ModuleExtension patching in independent function scope*

 - *ticket-id*

[GPU] Increase FC tile_b size for INT4 shape agnostic kernel  (openvinotoolkit#23532)

- Increased FC tile_B size for INT4 shape agnostic kernel for improving
context processing

 - 133444

[GPU] Enable 8bit compression support on dGPU via oneDNN (openvinotoolkit#22740)

 - Enable 8bit compression support on dGPU via oneDNN
 - Update oneDNN version
 - Enable oneDNN primitives cache

Ticket: 124115

[CPU] Add PagedAttention support (openvinotoolkit#23524)

 - *Support PagedAttention support, depends on:*
- openvino_contrib:
openvinotoolkit/openvino_contrib#867
    - vLLM: ilya-lavrenov/vllm#4
 - *TODO*
    - Models with alibi feature

 - *[134329](https://jira.devtools.intel.com/browse/CVS-134329)*
 - *[134327](https://jira.devtools.intel.com/browse/CVS-134327)*

[GPU] In gemm_tile_kernel, applied to use block read when N and K byte-size is aligned 4. (openvinotoolkit#23400)

- *Element by element read is the bottle-neck in gemm_tiled kernel.
Enable block-read when N and K size are aligned 4byte with N and K are
leftover*.
- *Increasing tile_n_size has performance improvement when m_size and
n_size are not shallow and n_size is aligned at 32.*
 - *Add GEMM_TILE_M/N/K/SIMD environment variables for convenience.*

 - *134279*

---------

Signed-off-by: hyunback <hyunback.kim@intel.com>

[CPU] [ARM64] jit eltwise: int8 support (openvinotoolkit#22687)

 - *int8 support*

 - *CVS-128643*

[ONNX] Extended ReduceMax by opsets 13,18,20 (openvinotoolkit#23475)

 - Extended ReduceMax by opsets 13,18,20
 - Updated a using opset for ONNX to 20
 - Added tests for additional supported types
 - Enabled backend tests

  - Closes openvinotoolkit#20555

[CPU] Enable concat nspc layout inplace for urlnet model cases (openvinotoolkit#23454)

- *enable concat nspc layout inplace for channel only cases, with these
concat node use inplace impl, urlnet model gain performance benefits,
and this(intermediate concat node is nspc layout but actually is one
dimension) could be common case especially for models with 1D input*

 - *130282*

[CPU]Fix GPT-J RoPE fusion (openvinotoolkit#23519)

 - *Support new RoPE pattern of GPT-J*
- *Local test shows 17 % improvement for 2nd token latency for BF16 in
`Intel(R) Xeon(R) Platinum 8468`*

 - *CVS-134949*

Torch Compile - New Op Support (openvinotoolkit#23310)

New op support for:
 - torch.export updates
 - benchmarking model support
 - chatglm2 support

---------

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: ynimmaga <yamini.nimmagadda@intel.com>
Co-authored-by: Maxim Vafin <maxim.vafin@intel.com>
Co-authored-by: suryasidd <surya.siddharth.pemmaraju@intel.com>

[DOCS] Latency highlight for OV devices + update of Optimize Inference for master (openvinotoolkit#23575)

Jira: 133389

* Added an indication on Latency being the default use for OV devices
* Streamlined the Optimize Inference article for better clarity.

[TF FE] Support complex tensors for OnesLike operation (openvinotoolkit#23445)

 - *Adding support for OnesLike operation on complex type tensor*
- Closes openvinotoolkit#22953

---------

Co-authored-by: Michal Lukaszewski <michal.lukaszewski@intel.com>
Co-authored-by: Roman Kazantsev <roman.kazantsev@intel.com>

[CI] [GHA] Remove usage of the `SimenB/github-actions-cpu-cores` action (openvinotoolkit#23583)

 - The action does not have a License.
 - `cmake` should figure out the # of cores for parallel.

[CPU] [ARM64] jit select (openvinotoolkit#23450)

 - *[CPU] [AARCH64] jit select*

 - *CVS-135445*

New DB schema for GitHub metrics script (openvinotoolkit#23606)

Improvements and fixes for the script which sends GitHub Workflow
metrics to a database. See also:
[23484](openvinotoolkit#23484)

[JS API] Extract code from CompiledModel getters (openvinotoolkit#23515)

- Extract the same logic structure from `CompileModel::input` and
`CompileModel::output`
- Add a private `CompileModel::get_node` method that gets the specified
input or output node.

Note:
No changes to argument validation or conversion.

 - *127617*

constraints openvino-dev: Limit mpmath<1.4 (openvinotoolkit#23601)

- Limit mpmath because of
pytorch/pytorch#120995 and
sympy/sympy#26273

[GPU] Re-enable memory reuse for gemm (openvinotoolkit#23600)

- Since openvinotoolkit#22726 gemm is derived from multi-stage impl which had memory
reuse flag enforced to false for all sub-classes.
- This patch enables memory reuse back for gemm kernel to reduce memory
consumption.

 - *135361*

[TF FE] Support TensorFlow 2.16 (openvinotoolkit#23562)

**Details:** Support TensorFlow 2.16

**Ticket:** TBD

---------

Signed-off-by: Kazantsev, Roman <roman.kazantsev@intel.com>

[IE TESTS][OP CONFORMANCE] Move `ConstRanges` range calculation to `InGenData` constructor (openvinotoolkit#23427)

 - *Move static const range initialization to `InData` structure*

 - *[125993](https://jira.devtools.intel.com/browse/CVS-125993)*

Enable new property model_distribution_policy for CPU inference (openvinotoolkit#23077)

 - *Enable new property model_distribution_policy for CPU inference*
 -- *Add C++ interface and test cases*
 -- *Add Python interface and test cases*

 - *CVS-127844*

[CPU] optimize PagedAttention's shape inference (openvinotoolkit#23603)

 - *Specific shape inference for PagedAttention*
 - *...*

 - *ticket-id*

[CPU] [ARM64] jit equal (openvinotoolkit#23266)

 - *[CPU] [AARCH64] jit eltwise Equal

 - *CVS-134691*

[GPU] Fix count non zero for empty input (openvinotoolkit#23597)

- Adds buffer reset to 0 in `count_nonzero` impl in case of empty input
tensor as currently we may try to allocate random amount of memory in
subsequent `gather_nonzero` call

[PyOV] Add Python API for MaxPool-14 and AvgPool-14 (openvinotoolkit#22966)

 - Extend Python API with`MaxPool-14` and `AvgPool-14`
- They both introduce a new ceil mode:
`ov::op::RoundingType::CEIL_TORCH`
- The new ceiling mode does not allow the last pooling in a Dimension to
start in the padding area

 - openvinotoolkit#22930
 - openvinotoolkit#22796
 - openvinotoolkit#23027
 - openvinotoolkit#23381
 - openvinotoolkit#23582

 - 131961

openvinotoolkit#18731

---------

Co-authored-by: Katarzyna Mitrus <katarzyna.mitrus@intel.com>

[Spec] Clarify specification for StridedSlice (openvinotoolkit#23039)

- Add notes with descriptions of: Out of Bounds, Indexing in Reverse,
Negative Indices
 - Clarified length of masks
 - Clarified the definition of `-1` value
- Described in detail the behavior of masks, aligned with Reference
Implementation
 - Added more latex-like style, add the examples for the missing masks.

 - 90128

[TRANSFORMATIONS] Remove use of legacy names from transformations (openvinotoolkit#23574)

[TRANSFORMATIONS] Remove use of legacy names from transformations

API function create_ie_output_name() and get_ie_output_name() are
deprecated in a28a000 ("Deprecated functions to operate with legacy
port names (openvinotoolkit#22717)")

Remove usages of create_ie_output_name() in Transformations

CVS-132087
Signed-off-by: Andrii Staikov andrii.staikov@intel.com

---------

Signed-off-by: Andrii Staikov andrii.staikov@intel.com

[Opset14][Spec] ConvertPromoteTypes-14 specification (openvinotoolkit#23264)

- *This PR introduces specification for ConvertPromoteTypes-14 op -
conversion op used to align two inputs to common type*
- *Operator was introduced for PyTorch Frontend, rules also match
Tensorflow https://www.tensorflow.org/guide/tf_numpy_type_promotion*
- PR with core implementation:
openvinotoolkit#22566
- Draft PR with improvements to core + replacement it PTFe:
openvinotoolkit#22770

 - *129197*

---------

Co-authored-by: Katarzyna Mitrus <katarzyna.mitrus@intel.com>

[CPU][ARM] Upgrade to ACL v24.02.1 (openvinotoolkit#22598)

oneDNN PR: openvinotoolkit/oneDNN#227

[API CONFORMANCE] Modify API conformance suite for SW plugins (openvinotoolkit#23557)

 - *Move some properties from mandatory to optional for sw plugins*
 - *...*

 - *[133459](https://jira.devtools.intel.com/browse/CVS-133459)*

Calculate model weights hash in parallel (openvinotoolkit#23605)

- Calculate model weights hash in parallel in case of reading model from
buffer

 - CVS-134771

[DOCS] improve legacy section formatting (openvinotoolkit#23512)

[DOCS] ai legal disclaimer (openvinotoolkit#23587)

[TRANSFORMATIONS] Create python binding for pattern::Optional (openvinotoolkit#23558)

[TRANSFORMATIONS] Create python binding for pattern::Optional

Expose the C++ op::pattern::Optional to Python in order to
simplify patterns creation.
Cover the functionality with the dedicated tests.

CVS-133523

Signed-off-by: Andrii Staikov <andrii.staikov@intel.com>

---------

Signed-off-by: Andrii Staikov <andrii.staikov@intel.com>

[CPU] Fix SDPA pattern matching (openvinotoolkit#23581)

Limit the Concat layer to have maximum 3 children. The third one is
allowed to be a ShapeOf op only (to support Mixtral).

 - 135375

[chore] Use debug loglevel for github metrics script (openvinotoolkit#23633)

We can switch log level for GitHub metrics script only when the workflow
is restarted with debug logging

[TF FE] Enable parallel execution of TensorFlow Layer 2 python tests (openvinotoolkit#23344)

Addresses issue: openvinotoolkit#20919

- Enables parallel execution of TensorFlow Layer 2 python tests
- Fixes test_tf2_keras_conv_lstm_2d.py and test_tf2_map_fn.py to not
fail during parallel execution
- Appends args in github workflow to enable parallel execution

Errors fixed:
- Due to varying Kera activation function addresses causing the workers
to get different parameter inputs and thus failing. See [known
issue](https://pytest-xdist.readthedocs.io/en/stable/known-limitations.html#order-and-amount-of-test-must-be-consistent)
```
-tensorflow2_keras_tests/test_tf2_keras_conv_lstm_2d.py::TestKerasConvLSTM2D::test_keras_conv_lstm_2d_basic[ ie_device:CPU - precision:FP32 - params:{'params': {'filters': 4, 'kernel_size': (3, 3), 'padding': 'same', 'return_sequences': False, 'activation': <function swish at 0x7f1fadf364d0>}, 'input_shapes': [[2, 5, 20, 30, 2]]} ]
-tensorflow2_keras_tests/test_tf2_keras_conv_lstm_2d.py::TestKerasConvLSTM2D::test_keras_conv_lstm_2d_basic[ ie_device:CPU - precision:FP32 - params:{'params': {'filters': 6, 'kernel_size': (2, 3), 'padding': 'valid', 'dilation_rate': 3, 'recurrent_activation': <function elu at 0x7f1fe6a1a830>, 'return_sequences': True, 'use_bias': True, 'data_format': 'channels_first'}, 'input_shapes': [[2, 5, 1, 40, 30]]} ]
+tensorflow2_keras_tests/test_tf2_keras_conv_lstm_2d.py::TestKerasConvLSTM2D::test_keras_conv_lstm_2d_basic[ ie_device:CPU - precision:FP32 - params:{'params': {'filters': 4, 'kernel_size': (3, 3), 'padding': 'same', 'return_sequences': False, 'activation': <function swish at 0x7f635e4d24d0>}, 'input_shapes': [[2, 5, 20, 30, 2]]} ]
+tensorflow2_keras_tests/test_tf2_keras_conv_lstm_2d.py::TestKerasConvLSTM2D::test_keras_conv_lstm_2d_basic[ ie_device:CPU - precision:FP32 - params:{'params': {'filters': 6, 'kernel_size': (2, 3), 'padding': 'valid', 'dilation_rate': 3, 'recurrent_activation': <function elu at 0x7f6396fa2830>, 'return_sequences': True, 'use_bias': True, 'data_format': 'channels_first'}, 'input_shapes': [[2, 5, 1, 40, 30]]} ]
```

- Due to lambda function definitions giving varying addresses as inputs
```
-tensorflow2_keras_tests/test_tf2_map_fn.py::TestMapFN::test_multiple_inputs_outputs_int32[ ie_device:CPU - precision:FP32 - params:{'fn': <function TestMapFN.<lambda> at 0x7f66c2c63c70>, 'input_type': tf.int32, 'fn_output_signature': (tf.int32, tf.int32, tf.int32), 'back_prop': True, 'input_names': ['x1', 'x2', 'x3'], 'input_shapes': [[2, 1, 3, 4], [2, 1, 3, 4], [2, 1, 3, 4]]} ]
-tensorflow2_keras_tests/test_tf2_map_fn.py::TestMapFN::test_multiple_inputs_outputs_int32[ ie_device:CPU - precision:FP16 - params:{'fn': <function TestMapFN.<lambda> at 0x7f66c2c63c70>, 'input_type': tf.int32, 'fn_output_signature': (tf.int32, tf.int32, tf.int32), 'back_prop': True, 'input_names': ['x1', 'x2', 'x3'], 'input_shapes': [[2, 1, 3, 4], [2, 1, 3, 4], [2, 1, 3, 4]]} ]
+tensorflow2_keras_tests/test_tf2_map_fn.py::TestMapFN::test_multiple_inputs_outputs_int32[ ie_device:CPU - precision:FP32 - params:{'fn': <function TestMapFN.<lambda> at 0x7f211b56fd00>, 'input_type': tf.int32, 'fn_output_signature': (tf.int32, tf.int32, tf.int32), 'back_prop': True, 'input_names': ['x1', 'x2', 'x3'], 'input_shapes': [[2, 1, 3, 4], [2, 1, 3, 4], [2, 1, 3, 4]]} ]
+tensorflow2_keras_tests/test_tf2_map_fn.py::TestMapFN::test_multiple_inputs_outputs_int32[ ie_device:CPU - precision:FP16 - params:{'fn': <function TestMapFN.<lambda> at 0x7f211b56fd00>, 'input_type': tf.int32, 'fn_output_signature': (tf.int32, tf.int32, tf.int32), 'back_prop': True, 'input_names': ['x1', 'x2', 'x3'], 'input_shapes': [[2, 1, 3, 4], [2, 1, 3, 4], [2, 1, 3, 4]]} ]
```

---------

Co-authored-by: Roman Kazantsev <roman.kazantsev@intel.com>

[ IE TESTS ] Update tensor comparation function according plugin requirments (openvinotoolkit#23226)

- *Comparation function was changed to compare tensors based on element
comparation*
- *`std::abs(ref_value - plugin_value) <= abs_threshold + rel_threshold
* ref_value`*
- *`abs_threshold ` =
std::max(std::numeric_limits::eps<plugin_element_type>(),
std::numeric_limits::eps<ref_element_type>())*
- *`ref_threshold = eps_by_expected_type()`, which is based on half `bit
length of mantissa`*

 - [CVS-133173](https://jira.devtools.intel.com/browse/CVS-133173)
 - [CVS-135540](https://jira.devtools.intel.com/browse/CVS-135540)

---------

Co-authored-by: sbalandi <sofya.balandina@intel.com>

[TF FE] Support Angle operation for TensorFlow models (openvinotoolkit#23028)

 - *Support Angle operation for TensorFlow models*

 - Closes openvinotoolkit#22083

---------

Co-authored-by: Roman Kazantsev <roman.kazantsev@intel.com>

[GPU] Extend gemm to fuse broadcast and reshape layers (openvinotoolkit#23513)

- Fuse `broadcast` and `reshape` layers into `gemm` layer for LLM's 2nd
latency optimization
     - before : [`broadcast`] --> [`reshape`] --> `gemm`
     - after : `gemm`
- `gemm` is extended to have `input0_target_shape`,
`input1_target_shape`, `input0_output_pattern` and
`input1_output_pattern` from `broadcast` and `reshape` layers

 - 128343

---------

Signed-off-by: Andrew Park <andrew.park@intel.com>

[GPU] Extend pattern for ClampFP16Output (openvinotoolkit#23592)

- By PR(openvinotoolkit#22245),
`clamp_fp16_output` opt pass was moved to ngraph
- Because nodes such as eltwise(`Add`, `Subtract`, `Multiply`, `Divide`)
that were fused into target node `gemm` are not supported in pattern,
corresponding pattern was extended for this purpose

 - 135060

Fix the aten::mv for pytorch models openvinotoolkit#22073 (openvinotoolkit#22677)

 - *item1*
 - *...*
Add aten::mv operator
close openvinotoolkit#22073
 - *ticket-id*

---------

Co-authored-by: Ekaterina Aidova <ekaterina.aidova@intel.com>
Co-authored-by: Michal Lukaszewski <michal.lukaszewski@intel.com>

Remove NGraphFunctions namespace (openvinotoolkit#23627)

 - Remove NGraphFunctions namespace

 - CVS-133379

[PY API] Fix the preoblem that Node.get_attributes() cannot return all attributes (openvinotoolkit#23530)

- extend the `util::DictAttributeSerializer::on_adapter()` method,
making it compatible with `ov::PartialShape` and
`ov::op::util::Variable` types;
 - add extra tests to test the correctness of `Node.get_attributes()`

 - openvinotoolkit#23455

---------

Co-authored-by: Jan Iwaszkiewicz <jan.iwaszkiewicz@intel.com>

[CPU] Correct type configuration for i8 inner_product with f16 output (openvinotoolkit#23610)

 - 136298
 - 136163

Support aten::bucketize for pytorch models openvinotoolkit#23328 (openvinotoolkit#23527)

](openvinotoolkit#23328)
 - Support aten::bucketize for pytorch models

Move ConvertConvertPromoteTypes transformation from Common to MOC (openvinotoolkit#23630)

Move ConvertConvertPromoteTypes transformation from Common to MOC

 N/A

[CPU][ARM] Enable both f16 and f32 kernels for aarch64 and introduce runtime f16 support check (openvinotoolkit#22992)

Inherited from openvinotoolkit#22437

---------

Co-authored-by: Ilya Lavrenov <ilya.lavrenov@intel.com>

[ONNX] Reduced memory consumption while running tests (openvinotoolkit#23628)

 - Significantly reduced amount of using RAM while testing
- May introduce test regression in multi-worker scenario (-n auto), but
it isn't detected while validation

 - 129958

[TF FE] Add testing StringLower and TextVectorization operations on non-ASCII sentences (openvinotoolkit#23641)

**Details:** Add testing non-ASCII sentences for StringLower operation.
Needs to be merged after
openvinotoolkit/openvino_tokenizers#80.

**Ticket:** 135752

---------

Signed-off-by: Kazantsev, Roman <roman.kazantsev@intel.com>

Symbol Tracking API updated and made public (openvinotoolkit#23136)

- dev_api `ov::DimensionTracker` and `ov::TableOfEquivalence` classes
deleted, logic moved to `ov::Symbol` which is now stored by
`ov::Dimension`
- new implementation moves responsibility to store and report relations
between Symbols directly to the Symbol object. Hence, there is no need
for `ov::TableOfEquivalence` and no need for synchronization point
anymore.
- Equivalence is being tracked by using
[Disjoint-set_data_structure](https://en.wikipedia.org/wiki/Disjoint-set_data_structure)
which uses less memory than previous implementation.

![image](https://github.com/openvinotoolkit/openvino/assets/55839243/f1266f32-976d-44f9-a6ea-cd04dce07407)

![image](https://github.com/openvinotoolkit/openvino/assets/55839243/3108d1ad-0d30-4041-aa93-c4de1f1fb979)

 - *CVS-133123*

Align friendly names uniqueization (openvinotoolkit#22729)

Removed code that makes friendly names unique from Serialization and a
name uniqueness check from Deserializator.
Enabled the mode of ResolveNameCollisions transformation to uniqueize
all friendly names, not only autogenerated in Frontends

 - *CVS-131567*

---------

Co-authored-by: Evgenya Nugmanova <evgeniia.nugmanova@intel.com>
Co-authored-by: Andrei Kochin <andrei.kochin@intel.com>

[CPU][REFACTORING] Use memory access helper methods where possible (openvinotoolkit#23442)

fix coverity issue 1540833 and 1540832 (openvinotoolkit#23635)

 - *fix coverity scan  issue1540833 and issue1540832*

 - *ticket-id*

[CPU] Prohibit fc avx2_vnni_2 decompression for bf16 input (openvinotoolkit#23638)

- The FC changes made in scope of openvinotoolkit#20486 were missed when rebasing
- The context is: Even the system and the node does support bf16
precision we have to fall back to f32 in/out precision
due to lack of support for decompression with bf16 avx2_vnni_2 in oneDNN
fork.
- To cover this limitation an additional type mapping parameter in form
of std::function was introduced for disabling particular type mapping
entry using a runtime check (isa support in this case)

 - 122347
 - 136163

Merged master changes

Update src/frontends/tensorflow_common/src/op/gelu.cpp

updated approximation access
bbielawx pushed a commit to bbielawx/openvino that referenced this pull request Apr 12, 2024
… inferenced (openvinotoolkit#22806)

### Details:
- *Fix the issue which second infer with updated shape in dynamic loop
doesn't update sliced layout.*
- *Fix the issue that the optimized reshape doesn't reinterpret output
memory in update_output_layout()*

### Tickets:
 - *122739*
 - *131544*
alvoron pushed a commit to alvoron/openvino that referenced this pull request Apr 29, 2024
… inferenced (openvinotoolkit#22806)

### Details:
- *Fix the issue which second infer with updated shape in dynamic loop
doesn't update sliced layout.*
- *Fix the issue that the optimized reshape doesn't reinterpret output
memory in update_output_layout()*

### Tickets:
 - *122739*
 - *131544*
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
category: GPU OpenVINO GPU plugin
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants