-
Notifications
You must be signed in to change notification settings - Fork 51
NI RFmx LTE SEM Configuration Functions
- RFmxLTE_SEMCfgAveraging
- RFmxLTE_SEMCfgSweepTime
- RFmxLTE_SEMCfgUplinkMaskType
- RFmxLTE_SEMCfgDownlinkMask
- RFmxLTE_SEMCfgComponentCarrierMaximumOutputPower
- RFmxLTE_SEMCfgNumberOfOffsets
- RFmxLTE_SEMCfgOffsetFrequency
- RFmxLTE_SEMCfgOffsetBandwidthIntegral
- RFmxLTE_SEMCfgOffsetRBWFilter
- RFmxLTE_SEMCfgOffsetLimitFailMask
- RFmxLTE_SEMCfgOffsetAbsoluteLimit
- RFmxLTE_SEMCfgOffsetRelativeLimit
- RFmxLTE_BuildSubblockString
- RFmxLTE_BuildOffsetString
- Array Configuration
int32 __stdcall RFmxLTE_SEMCfgAveraging (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 averagingEnabled, int32 averagingCount, int32 averagingType);
Configures averaging for the SEM measurement.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
averagingEnabled | int32 | Specifies whether to enable averaging for the measurement. |
RFMXLTE_VAL_SEM_AVERAGING_ENABLED_FALSE (0) | The measurement is performed on a single acquisition. |
---|---|
RFMXLTE_VAL_SEM_AVERAGING_ENABLED_TRUE (1) | The measurement is averaged over multiple acquisitions. The number of acquisitions is obtained by the averagingCount parameter. |
averagingCount | int32 | Specifies the number of acquisitions used for averaging when you set the averagingEnabled parameter to RFMXLTE_VAL_SEM_AVERAGING_ENABLED_TRUE. |
averagingType | int32 | Specifies the averaging type for averaging multiple spectrum acquisitions. The averaged spectrum is used for the measurement. |
RFMXLTE_VAL_SEM_AVERAGING_TYPE_RMS (0) | The power spectrum is linearly averaged. RMS averaging reduces signal fluctuations but not the noise floor. |
---|---|
RFMXLTE_VAL_SEM_AVERAGING_TYPE_LOG (1) | The power spectrum is averaged in a logarithmic scale. |
RFMXLTE_VAL_SEM_AVERAGING_TYPE_SCALAR (2) | The square root of the power spectrum is averaged. |
RFMXLTE_VAL_SEM_AVERAGING_TYPE_MAXIMUM (3) | The peak power in the spectrum at each frequency bin is retained from one acquisition to the next. |
RFMXLTE_VAL_SEM_AVERAGING_TYPE_MINIMUM (4) | The lowest power in the spectrum at each frequency bin is retained from one acquisition to the next. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_SEMCfgSweepTime (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 sweepTimeAuto, float64 sweepTimeInterval);
Configures the sweep time.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
sweepTimeAuto | int32 | Specifies whether the measurement computes the sweep time. |
RFMXLTE_VAL_SEM_SWEEP_TIME_AUTO_FALSE (0) | The measurement uses the sweep time that you specify in the sweepTimeInterval parameter. |
---|---|
RFMXLTE_VAL_SEM_SWEEP_TIME_AUTO_TRUE (1) | The measurement uses a sweep time of 1 ms. |
sweepTimeInterval | float64 | Specifies the sweep time when you set the sweepTimeAuto parameter to RFMXLTE_VAL_SEM_SWEEP_TIME_AUTO_FALSE. This value is expressed in seconds. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_SEMCfgUplinkMaskType (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 uplinkMaskType);
Configures the standard defined mask type that has to be used in the measurement for uplink.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
uplinkMaskType | int32 | Specifies the standard-defined spectrum emission mask used in the measurement for uplink. The following mask types are supported: general, NS_03orNS_11orNS_20orNS_21, NS_04, NS_06orNS_07, CA_NS_04, custom, generalCAClassB, CA_NC_NS_01, NS_27, and NS_35. Each mask type refers to a different Network Signalled (NS) value. CA_NS_04 and CA_NC_NS_01 refers to carrier aggregation case. You must set the mask type to CUSTOM to configure the custom offset masks. Refer to section 6.6.2.1 of the 3GPP 36.521 specification for more information about standard-defined mask types. |
RFMXLTE_VAL_SEM_UPLINK_MASK_TYPE_GENERAL_NS01 (0) | The measurement selects the offset frequencies and limits for the SEM as defined in Table 6.6.2.1.5-1, 6.6.2.1.5-2, 6.6.2.1A.5-1, and 6.6.2.1A.5-2 in section 6.6.2 of the 3GPP TS 36.521-1 specification. |
---|---|
RFMXLTE_VAL_SEM_UPLINK_MASK_TYPE_NS03_OR_NS11_OR_NS20_OR_NS21 (1) | The measurement selects the offset frequencies and limits for the SEM as defined in Table 6.6.2.2.5.1-1 and 6.6.2.2.5.1-2 in section 6.6.2 of the 3GPP TS 36.521-1 specification. |
RFMXLTE_VAL_SEM_UPLINK_MASK_TYPE_NS04 (2) | The measurement selects the offset frequencies and limits for the SEM in Table 6.6.2.2.3.2-3 in section 6.6.2 of the 3GPP TS 36.521-1 specification. When RFMXLTE_ATTR_COMPONENT_CARRIER_BANDWIDTH is 1.4 MHz or 3 MHz, the measurement selects the offset frequencies and limits for the SEM as defined in Table 6.6.2.2.5.2-1 in section 6.6.2 of the 3GPP TS 36.521-1 specification. |
RFMXLTE_VAL_SEM_UPLINK_MASK_TYPE_NS06_OR_NS07 (3) | The measurement selects the offset frequencies and limits for the SEM as defined in Table 6.6.2.2.5.3-1 and 6.6.2.2.5.3-2 in section 6.6.2 of the 3GPP TS 36.521-1 specification. |
RFMXLTE_VAL_SEM_UPLINK_MASK_TYPE_CANS04 (4) | The measurement selects the offset frequencies and limits for the SEM as defined in Table 6.6.2.2A.1.5.1-1 in section 6.6.2 of the 3GPP TS 36.521-1 specification. This mask applies only for aggregated carriers. |
RFMXLTE_VAL_SEM_UPLINK_MASK_TYPE_CUSTOM (5) | You need to configure the RFMXLTE_ATTR_SEM_NUMBER_OF_OFFSETS), RFMXLTE_ATTR_SEM_OFFSET_START_FREQUENCY), RFMXLTE_ATTR_SEM_OFFSET_STOP_FREQUENCY), RFMXLTE_ATTR_SEM_OFFSET_ABSOLUTE_LIMIT_START), RFMXLTE_ATTR_SEM_OFFSET_ABSOLUTE_LIMIT_STOP), RFMXLTE_ATTR_SEM_OFFSET_SIDEBAND), RFMXLTE_ATTR_SEM_OFFSET_RBW_FILTER_BANDWIDTH), RFMXLTE_ATTR_SEM_OFFSET_RBW_FILTER_TYPE), and RFMXLTE_ATTR_SEM_OFFSET_BANDWIDTH_INTEGRAL) attributes for each offset. |
RFMXLTE_VAL_SEM_UPLINK_MASK_TYPE_GENERAL_CACLASSB (6) | The measurement selects offset frequencies and limits for the SEM as defined in Table 6.6.2.1A.1.5-3 and 6.6.2.1A.1.5-4 in section 6.6.2 of 3GPP TS 36.521-1 specification. |
RFMXLTE_VAL_SEM_UPLINK_MASK_TYPE_CANCNS01 (7) | The measurement selects offset frequencies and limits for the SEM as defined in Table 6.6.2.2A.3.5-1 and 6.6.2.2A.3.5-2 in section 6.6.2 of 3GPP TS 36.521-1 specification. |
RFMXLTE_VAL_SEM_UPLINK_MASK_TYPE_NS27 (8) | The measurement selects offset frequencies and limits for the SEM as defined in Table 6.6.2.2.5.4-1 in section 6.6.2.2.5.4 of 3GPP TS 36.521-1 specification. |
RFMXLTE_VAL_SEM_UPLINK_MASK_TYPE_NS35 (9) | The measurement selects offset frequencies and limits for the SEM as defined in Table 6.6.2.2.5.5-1 in section 6.6.2.2.5.5 of 3GPP TS 36.521-1 specification. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_SEMCfgDownlinkMask (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 downlinkMaskType, float64 deltaFMaximum, float64 aggregatedMaximumPower);
Configures the downlinkMaskType, deltaF_max, and aggregatedMaximumOutputPower parameters for the SEM measurement in LTE downlink.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
downlinkMaskType | int32 | Specifies the standard-defined spectrum emission mask used in the measurement for the downlink. You must set the mask type to CUSTOM to configure the custom offsets and the masks. Refer to section 6.6.3 of the 3GPP 36.141 specification for more information about standard-defined mask types. |
RFMXLTE_VAL_SEM_DOWNLINK_MASK_TYPE_ENODEB_CATEGORY_BASED (0) | Specifies limits are applied based on eNodeB Category attribute. |
---|---|
RFMXLTE_VAL_SEM_DOWNLINK_MASK_TYPE_BAND46 (1) | Specifies that limits are applied based on Band 46 test requirements. |
RFMXLTE_VAL_SEM_DOWNLINK_MASK_TYPE_CUSTOM (5) | You need to configure the RFMXLTE_ATTR_SEM_NUMBER_OF_OFFSETS), RFMXLTE_ATTR_SEM_OFFSET_START_FREQUENCY), RFMXLTE_ATTR_SEM_OFFSET_STOP_FREQUENCY), RFMXLTE_ATTR_SEM_OFFSET_ABSOLUTE_LIMIT_START), RFMXLTE_ATTR_SEM_OFFSET_ABSOLUTE_LIMIT_STOP), SEM Offset Rel Limit Start, RFMXLTE_ATTR_SEM_OFFSET_RELATIVE_LIMIT_STOP), RFMXLTE_ATTR_SEM_OFFSET_SIDEBAND), RFMXLTE_ATTR_SEM_OFFSET_RBW_FILTER_BANDWIDTH), RFMXLTE_ATTR_SEM_OFFSET_RBW_FILTER_TYPE), and RFMXLTE_ATTR_SEM_OFFSET_BANDWIDTH_INTEGRAL) attributes for each offset. |
deltaFMaximum | float64 | Specifies the stop frequency for the last offset segment to be used in the measurement. This value is expressed in Hz. |
aggregatedMaximumPower | float64 | Specifies the aggregated maximum output power of all the transmit antenna connectors. This value is expressed in dBm. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_SEMCfgComponentCarrierMaximumOutputPower (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 componentCarrierMaximumOutputPower);
Configures the maximum output power of the component carrier. Use "carrier<k>" or "subblock<n>/carrier<k>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name, subblock number and carrier number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0/carrier0" "signal::sig1/subblock0/carrier0" You can use the RFmxLTE_BuildCarrierString) function to build the selector string. |
componentCarrierMaximumOutputPower | float64 | Specifies the maximum output power per carrier, which is used only to choose the limit table for Medium Range Base Station. This value is expressed in dBm. Refer to the section 6.6.3 of the 3GPP 36.141 specification for more details. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_SEMCfgNumberOfOffsets (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 numberOfOffsets);
Configures the number of offset segments for the SEM measurement.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name, result name, and subblock number. If you do not specify the signal name, the default signal instance is used. If you do not specify the result name, the default result instance is used. Example: "subblock0" "signal::sig1/subblock0" "result::r1/subblock0" "signal::sig1/result::r1/subblock0" You can use the RFmxLTE_BuildSubblockString) function to build the selector string. |
numberOfOffsets | int32 | Specifies the number of SEM offset segments. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_SEMCfgOffsetFrequency (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 offsetStartFrequency, float64 offsetStopFrequency, int32 offsetSideband);
Configures the start and stop frequencies and the sideband of an offset segment. Use "offset<n>" or "subblock<n>/offset<n>" as the selector string to configure from this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name, subblock number, and offset number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0/offset0" "signal::sig1/subblock0/offset0" You can use the RFmxLTE_BuildOffsetString) function to build the selector string. |
offsetStartFrequency | float64 | Specifies the start frequency of an offset segment relative to the carrier channel bandwidth edge (single-carrier) or the subblock aggregated channel bandwidth edge (multi-carrier). This value is expressed in Hz. |
offsetStopFrequency | float64 | Specifies the stop frequency of an offset segment relative to the carrier channel bandwidth edge (single-carrier) or the subblock aggregated channel bandwidth edge (multi-carrier). This value is expressed in Hz. |
offsetSideband | int32 | Specifies whether the offset segment is present on one side, or on both sides of the carrier. |
RFMXLTE_VAL_SEM_OFFSET_SIDEBAND_NEGATIVE (0) | Configures a lower offset segment to the left of the leftmost carrier. |
---|---|
RFMXLTE_VAL_SEM_OFFSET_SIDEBAND_POSITIVE (1) | Configures an upper offset segment to the right of the rightmost carrier. |
RFMXLTE_VAL_SEM_OFFSET_SIDEBAND_BOTH (2) | Configures both the negative and the positive offset segments. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_SEMCfgOffsetBandwidthIntegral (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 offsetBandwidthIntegral);
Configures the bandwidth integral of the offset segments. Use "offset<n>" or "subblock<n>/offset<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name, subblock number, and offset number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0/offset0" "signal::sig1/subblock0/offset0" You can use the RFmxLTE_BuildOffsetString) function to build the selector string. |
offsetBandwidthIntegral | int32 | Specifies the resolution of the spectrum to compare with the spectral mask limits as an integer multiple of the RBW. When you set this parameter to a value greater than 1, the measurement acquires the spectrum with a narrow resolution and then processes it digitally to get a wider resolution that is equal to the product of a bandwidth integral and a RBW. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_SEMCfgOffsetRBWFilter (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 offsetRBW, int32 offsetRBWFilterType);
Configures the offset RBW and the offset RBW filter type. Use "offset<n>" or "subblock<n>/offset<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name, subblock number, and offset number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0/offset0" "signal::sig1/subblock0/offset0" You can use the RFmxLTE_BuildOffsetString) function to build the selector string. |
offsetRBW | float64 | Specifies the bandwidth of an RBW filter used to sweep an acquired offset segment. This value is expressed in Hz. |
offsetRBWFilterType | int32 | Specifies the shape of the digital RBW filter. |
RFMXLTE_VAL_SEM_OFFSET_RBW_FILTER_TYPE_FFT_BASED (0) | No RBW filtering is performed. |
---|---|
RFMXLTE_VAL_SEM_OFFSET_RBW_FILTER_TYPE_GAUSSIAN (1) | The RBW filter has a Gaussian response. |
RFMXLTE_VAL_SEM_OFFSET_RBW_FILTER_TYPE_FLAT (2) | The RBW filter has a flat response. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_SEMCfgOffsetLimitFailMask (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 limitFailMask);
Configures the limit fail mask of the offset segments that specify the criteria to determine the measurement fail status. Use "offset<n>" or "subblock<n>/offset<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name, subblock number, and offset number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0/offset0" "signal::sig1/subblock0/offset0" You can use the RFmxLTE_BuildOffsetString) function to build the selector string. |
limitFailMask | int32 | Specifies the criteria to determine the measurement fail status. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_SEMCfgOffsetAbsoluteLimit (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 offsetAbsoluteLimitStart, float64 offsetAbsoluteLimitStop);
Configures the start and the stop limit of an offset segment. Use "offset<n>" or "subblock<n>/offset<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name, subblock number, and offset number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0/offset0" "signal::sig1/subblock0/offset0" You can use the RFmxLTE_BuildOffsetString) function to build the selector string. |
offsetAbsoluteLimitStart | float64 | Specifies the absolute power limit corresponding to the beginning of an offset segment. This value is expressed in dBm. |
offsetAbsoluteLimitStop | float64 | Specifies the absolute power limit corresponding to the end of an offset segment. This value is expressed in dBm. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_SEMCfgOffsetRelativeLimit (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 relativeLimitStart, float64 relativeLimitStop);
Configures the start and stop relative limit of the offset segment. Use "offset<n>" or "subblock<n>/offset<n>" as the selector string to read results from this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name, subblock number, and offset number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0/offset0" "signal::sig1/subblock0/offset0" You can use the RFmxLTE_BuildOffsetString) function to build the selector string. |
relativeLimitStart | float64 | Specifies the relative power limit corresponding to the beginning of the offset segment. This value is expressed in dB. |
relativeLimitStop | float64 | Specifies the relative power limit corresponding to the end of the offset segment. This value is expressed in dB. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_BuildSubblockString (char selectorString[], int32 subblockNumber, int32 selectorStringOutLength, char selectorStringOut[]);
Creates the subblock string to use as the selector string with the subblock configuration or fetch attributes and functions.
Input | ||
---|---|---|
Name | Type | Description |
selectorString | char[] | Specifies a selector string) comprising of the signal name and the result name. If you do not specify the signal name, the default signal instance is used. If you do not specify the result name, the default result instance is used. Example: "signal::sig1" "result::r1" "signal::sig1/result::r1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
subblockNumber | int32 | Specifies the number of subblocks that are configured in the intra-band noncontiguous carrier aggregation. Set this parameter to 1, which is the default, for single carrier and intra-band contiguous carrier aggregation. |
selectorStringOutLength | int32 | Specifies the length of the string that is returned by the selectorStringOut parameter. To get the minimum buffer size required to build the selector string, set the selectorStringOutLength parameter to 0. |
Output | ||
Name | Type | Description |
selectorStringOut | char[] | Returns the selector string created by this function. |
Name | Type | Description |
---|---|---|
statusOrRequiredSize | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. When the statusOrRequiredSize return value returns the buffer size, the status code is not returned. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_BuildOffsetString (char selectorString[], int32 offsetNumber, int32 selectorStringOutLength, char selectorStringOut[]);
Creates the offset string to use as the selector string with SEM and ACP offset configuration or fetch attributes and functions.
Input | ||
---|---|---|
Name | Type | Description |
selectorString | char[] | Specifies a selector string) comprising of the signal name and the result name. If you do not specify the signal name, the default signal instance is used. If you do not specify the result name, the default result instance is used. Example: "signal::sig1" "result::r1" "signal::sig1/result::r1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
offsetNumber | int32 | Specifies the offset number for building the selector string. |
selectorStringOutLength | int32 | Specifies the length of the string that is returned by the selectorStringOut parameter. To get the minimum buffer size required to build the selector string, set the selectorStringOutLength parameter to 0. |
Output | ||
Name | Type | Description |
selectorStringOut | char[] | Returns the selector string created by this function. |
Name | Type | Description |
---|---|---|
statusOrRequiredSize | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. When the statusOrRequiredSize return value returns the buffer size, the status code is not returned. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_SEMCfgComponentCarrierMaximumOutputPowerArray (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 componentCarrierMaximumOutputPower[], int32 numberOfElements);
Configures the array of maximum output power of the component carrier. Use "subblock<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name and the subblock number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0" "signal::sig1/subblock0" You can use the RFmxLTE_BuildSubblockString) function to build the selector string. |
componentCarrierMaximumOutputPower | float64[] | Specifies the array of maximum output power per carrier, which is used only to choose the limit table for Medium Range Base Station. This value is expressed in dBm. Refer to the section 6.6.3 of the 3GPP 36.141 specification for more details. |
numberOfElements | int32 | Specifies the number of elements in each array. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_SEMCfgOffsetFrequencyArray (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 offsetStartFrequency[], float64 offsetStopFrequency[], int32 offsetSideband[], int32 numberOfElements);
Configures the arrays of the start and stop frequencies and the sideband of an offset segment. Use "subblock<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name, result name, and subblock number. If you do not specify the signal name, the default signal instance is used. If you do not specify the result name, the default result instance is used. Example: "subblock0" "signal::sig1/subblock0" "result::r1/subblock0" "signal::sig1/result::r1/subblock0" You can use the RFmxLTE_BuildSubblockString) function to build the selector string. |
offsetStartFrequency | float64[] | Specifies the array of the start frequency values of the offset segment relative to the carrier channel bandwidth edge (single-carrier) or the subblock aggregated channel bandwidth edge (multi-carrier). This value is expressed in Hz. |
offsetStopFrequency | float64[] | Specifies the array of the stop frequency values of the offset segment relative to the carrier channel bandwidth edge (single-carrier) or the subblock aggregated channel bandwidth edge (multi-carrier). This value is expressed in Hz. |
offsetSideband | int32[] | Specifies whether the offset segment is present on one side, or on both sides of the carrier for each offset. |
RFMXLTE_VAL_SEM_OFFSET_SIDEBAND_NEGATIVE (0) | Configures a lower offset segment to the left of the leftmost carrier. |
---|---|
RFMXLTE_VAL_SEM_OFFSET_SIDEBAND_POSITIVE (1) | Configures an upper offset segment to the right of the rightmost carrier. |
RFMXLTE_VAL_SEM_OFFSET_SIDEBAND_BOTH (2) | Configures both the negative and the positive offset segments. |
numberOfElements | int32 | Specifies the number of elements in each array. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_SEMCfgOffsetBandwidthIntegralArray (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 offsetBandwidthIntegral[], int32 numberOfElements);
Configures the array of the bandwidth integral of the offset segments. Use "subblock<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name, result name, and subblock number. If you do not specify the signal name, the default signal instance is used. If you do not specify the result name, the default result instance is used. Example: "subblock0" "signal::sig1/subblock0" "result::r1/subblock0" "signal::sig1/result::r1/subblock0" You can use the RFmxLTE_BuildSubblockString) function to build the selector string. |
offsetBandwidthIntegral | int32[] | Specifies the array of the resolution values of the spectrum to compare with the spectral mask limits as an integer multiple of the RBW. When you set this parameter to a value greater than 1, the measurement acquires the spectrum with a narrow resolution and then processes it digitally to get a wider resolution that is equal to the product of a bandwidth integral and an RBW. |
numberOfElements | int32 | Specifies the number of elements in each array. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_SEMCfgOffsetRBWFilterArray (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 offsetRBW[], int32 offsetRBWFilterType[], int32 numberOfElements);
Configures the offset RBW and the offset RBW filter type arrays. Use "subblock<n>" as the selector string to configure from this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name, result name, and subblock number. If you do not specify the signal name, the default signal instance is used. If you do not specify the result name, the default result instance is used. Example: "subblock0" "signal::sig1/subblock0" "result::r1/subblock0" "signal::sig1/result::r1/subblock0" You can use the RFmxLTE_BuildSubblockString) function to build the selector string. |
offsetRBW | float64[] | Specifies the array of the RBW filter bandwidth values used to sweep the acquired offset segment, when you set the SEM Offset RBW Auto attribute to False. This value is expressed in Hz. |
offsetRBWFilterType | int32[] | Specifies the array of the shape of a digital RBW filter. |
RFMXLTE_VAL_SEM_OFFSET_RBW_FILTER_TYPE_FFT_BASED (0) | No RBW filtering is performed. |
---|---|
RFMXLTE_VAL_SEM_OFFSET_RBW_FILTER_TYPE_GAUSSIAN (1) | The RBW filter has a Gaussian response. |
RFMXLTE_VAL_SEM_OFFSET_RBW_FILTER_TYPE_FLAT (2) | The RBW filter has a flat response. |
numberOfElements | int32 | Specifies the number of elements in each array. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_SEMCfgOffsetLimitFailMaskArray (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 limitFailMask[], int32 numberOfElements);
Configures the array of limit fail mask of the offset segments that specifies the criteria to determine the measurement fail status. Use "subblock<n>" as the selector string to read results from this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name, result name, and subblock number. If you do not specify the signal name, the default signal instance is used. If you do not specify the result name, the default result instance is used. Example: "subblock0" "signal::sig1/subblock0" "result::r1/subblock0" "signal::sig1/result::r1/subblock0" You can use the RFmxLTE_BuildSubblockString) function to build the selector string. |
limitFailMask | int32[] | Specifies the array of criterion to determine the measurement fail status. |
numberOfElements | int32 | Specifies the number of elements in each array. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_SEMCfgOffsetAbsoluteLimitArray (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 offsetAbsoluteLimitStart[], float64 offsetAbsoluteLimitStop[], int32 numberOfElements);
Configures the array of the start limit and the stop limit of the offset segments. Use "subblock<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name and the subblock number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0" "signal::sig1/subblock0" You can use the RFmxLTE_BuildSubblockString) function to build the selector string. |
offsetAbsoluteLimitStart | float64[] | Specifies the array of the absolute power limits corresponding to the beginning of an offset segment. This value is expressed in dBm. |
offsetAbsoluteLimitStop | float64[] | Specifies the array of the absolute power limits corresponding to the end of an offset segment. This value is expressed in dBm. |
numberOfElements | int32 | Specifies the number of elements in each array. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_SEMCfgOffsetRelativeLimitArray (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 relativeLimitStart[], float64 relativeLimitStop[], int32 numberOfElements);
Configures the array of start and stop relative limits of the offset segments. Use "subblock<n>" as the selector string to read results from this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name, result name, and subblock number. If you do not specify the signal name, the default signal instance is used. If you do not specify the result name, the default result instance is used. Example: "subblock0" "signal::sig1/subblock0" "result::r1/subblock0" "signal::sig1/result::r1/subblock0" You can use the RFmxLTE_BuildSubblockString) function to build the selector string. |
relativeLimitStart | float64[] | Specifies the array of relative power limits corresponding to the beginning of the offset segment. This value is expressed in dB. |
relativeLimitStop | float64[] | Specifies the array of relative power limits corresponding to the end of the offset segment. This value is expressed in dB. |
numberOfElements | int32 | Specifies the number of elements in each array. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
Creating and Setting Up a gRPC Server
Session Utilities API Reference
gRPC API Differences From C API
Sharing Driver Sessions Between Clients
C API Docs
NI-DAQmx
- gRPC API Differences From C API
- Task Configuration And Control
- Channel Configuration And Creation
- Timing
- Triggering
- Read Functions
- Write Functions
- Export Hardware Signals
- Scale Configuration
- Internal Buffer Configuration
- Advanced Functions
- System Configuration
- Error Handling
- Buffer Attributes
- Calibration Info Attributes
- Channel Attributes
- Device Attributes
- Export Signal Attributes
- Persisted Channel Attributes
- Persisted Scale Attributes
- Persisted Task Attributes
- Physical Channel Attributes
- Read Attributes
- Scale Attributes
- System Attributes
- Task Attributes
- Timing Attributes
- Trigger Attributes
- Watchdog Attributes
- Write Attributes
NI-DCPOWER
- Setup Functions
- Configure Functions
- Measurement Functions
- Control Functions
- Trigger And Event
- Attribute Functions
- Query Functions
- Calibration Functions
- Utility Functions
- Supported Device
- Source Attributes
- Transient Attributes
- Voltage Attributes
- Current Attributes
- Pulse Voltage Attributes
- Pulse Current Attributes
- Cutoff Attributes
- Measurement Attributes
- Trigger Attributes Functions
- Event Attributes
- Advanced Attributes
- Inherent Ivi Attributes
- Supported Device Attributes
NI-DIGITAL PATTERN DRIVER
- Init And Close Functions
- Session Locking Functions
- Utility Functions
- Error Handling Functions
- Calibration Functions
- Attributes Functions
- Pin Map Functions
- Low Level Functions
- Low Level Action Functions
- Pin Control Functions
- Static IO Functions
- Clock Generator Functions
- Levels And Timing Functions
- TDR Functions
- PPMU Configuration Functions
- DC Voltage Functions
- DC Current Functions
- PPMU Action Functions
- Pattern Configuration Functions
- Pattern Action Functions
- History Ram Functions
- Source Memory Functions
- Capture Memory Functions
- Triggers And Events Functions
- Conditional Jump Trigger Functions
- Sequencer Flag Functions
- Sequencer Register Functions
- Match Fail Combination Functions
- Pattern Results Functions
- Sort Results Functions
- Frequency Measurement Functions
- IVI Inherent Attributes
- Specific Driver Information Attributes, Read Only
- Driver Setup Information Attributes
- Device Attributes
- Pin Control Attributes
- Level Configuration Attributes
- Trigger Configuration Attributes
- PPMU Attributes
- Patterns Attributes
- Pattern Opcode Event Attributes
- Timing Offset Attributes
- Keep Alive Attributes
- Frequency Measurement Attributes
- Clock Generator Attributes
- History RAM
- Synchronization Attributes
- TDR Endpoint Termination Attributes
NI-FGEN
- Setup Functions
- Configuration Functions
- Standard Output Functions
- Arbitrary Waveform Output Functions
- Arbitrary Sequence Output Functions
- Incremental Waveform Write Functions
- Configure Clock Functions
- Trigger And Syncronizations Functions
- 5404 Routing Functions
- Script Output Functions
- Configure Onboard Signal Processing Functions
- Configure Peer To Peer Functions
- Attribute Functions
- Waveform Control Functions
- Error Functions
- Output Attributes
- Arbitrary Waveform Attributes
- Data Transfer Attributes
- Onboard Signal Processing Attributes
- Peer To Peer Attributes
- Standard Function Attributes
- Clock Attributes
- Event Attributes
- Triggering Attributes
- Instrument Specific Attributes
- Inherent IVI Attributes
- 5401 5411 5431
NI-RFmx Bluetooth
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Fetch Results Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Packet Attributes
- Auto Detect Signal Attributes
- Modacc Attributes
- ACP Attributes
- Twenty dB Attributes
- Frequency Range Attributes
- TXP Attributes
- Advanced Attributes
NI-RFmx NR
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attributes Functions
- Fetch Results Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Signal Detection Attributes
- Component Carrier Attributes
- List Attributes
- Modacc Attributes
- ACP Attributes
- CHP Attributes
- OBW Attributes
- SEM Attributes
- TXP Attributes
- Pvt Attributes
- Advanced Attributes
NI-RFmx LTE
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Ch Configuration Functions
- NB IoT Configuration Functions
- ModAcc Configuration Functions
- ACP Configuration Functions
- CHP Configuration Functions
- OBW Configuration Functions
- SEM Configuration Functions
- PVT Configuration Functions
- SlotPhase Configuration Functions
- SlotPower Configuration Functions
- Set And Get Attribute Functions
- ModAcc Fetch Functions
- ACP Fetch Functions
- CHP Fetch Functions
- OBW Fetch Functions
- SEM Fetch Functions
- PVT Fetch Functions
- SlotPhase Fetch Functions
- SlotPower Fetch Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Component Carrier Attributes
- ModAcc Attributes
- ACP Attributes
- CHP Attributes
- OBW Attributes
- SEM Attributes
- PVT Attributes
- SlotPhase Attributes
- SlotPower Attributes
- Advanced Attributes
NI-RFmx SpecAn
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Read Functions
- Fetch Functions
- Utility Functions
- Marker Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- ACP Attributes
- Cdf Attributes
- CHP Attributes
- Fcnt Attributes
- Harm Attributes
- OBW Attributes
- SEM Attributes
- Spectrum Attributes
- Spur Attributes
- TXP Attributes
- AMPM Attributes
- Dpd Attributes
- IQ Attributes
- IM Attributes
- NF Attributes
- Phasenoise Attributes
- PAVT Attributes
- Advanced Attributes
NI-RFmx WLAN
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Fetch DSSS ModAcc Functions
- Fetch OFDM ModAcc Functions
- Fetch SEM Functions
- Fetch TXP Functions
- Fetch PowerRamp Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- OFDM Attributes
- Auto Detect Signal Attributes
- DSSS ModAcc Attributes
- OFDM ModAcc Attributes
- SEM Attributes
- TXP Attributes
- PowerRamp Attributes
- Advanced Attributes
NI-RFSA
- General Functions
- Configuration Functions
- Acquisition Functions
- Utility Functions
- Calibration Functions
- General Attributes
- Vertical Attributes
- Signal Path Attributes
- Acquisition Attributes
- Acquisition Attributes
- Triggers Attributes
- Events Attributes
- Device Characteristics Attributes
- Peer To Peer Streaming Attributes
- Configuration List Attributes
- Inherent IVI Properties Attributes
- De-embedding Attributes
- Self Calibration Attributes
- Factory Calibration Attributes
- External Alignment Attributes
- Device Specific Attributes
NI-RFSG
- General Functions
- Generation Configuration
- Utility Functions
- Calibration Functions
- Arb Attributes
- Clock Attributes
- Configuration List Attributes
- De-embedding Attributes
- Device Characteristics Attributes
- Device Specific Attributes
- Events Attributes
- External Calibration Attributes
- Inherent IVI Attributes Attributes
- IQ Impairment Attributes
- Load Configurations Attributes
- Modulation Attributes
- Obsolete Attributes
- Peer To Peer Attributes
- RF Attributes
- Self Calibration Attributes
- Triggers Attributes
NI-SCOPE
- Setup Functions
- Configure Functions
- Attribute Functions
- Acquisition Functions
- Measurement Functions
- Calibrate Functions
- Utility Funcitons
- Error Handling Functions
- IVI Compliance Or Obsolete Functions
- Vertical Attributes
- Horizontal Attributes
- Trigger Attributes
- Clocking Attributes
- Synchronization Attributes
- Acquisition Attributes
- Waveform Measurements Attributes
- Onboard Signal Processing Attributes
- Peer To Peer Streaming Attributes
- Device Attributes
- IVI Or Obsolete Attributes
- Instrument Capabilities Attributes
- If Digitizer Attributes
NI-XNET
- gRPC API differences from C APIs
- General Functions
- Cluster Properties
- Database Properties
- Device Properties
- ECU Properties
- Frame Properties
- Interface Properties
- LIN Schedule Entry Properties
- LIN Schedule Properties
- PDU Properties
- Session Ethernet Properties
- Session Frame Properties
- Session Interface Properties
- Session Properties
- Session SAE J1939 Properties
- Signal Properties
- Subframe Properties
- System Properties
- IP-Stack Functions
- Socket Options
- Socket Functions