-
Notifications
You must be signed in to change notification settings - Fork 51
NI RFmx SpecAn Configuration Functions
- RFmxSpecAn_CfgRF
- RFmxSpecAn_CfgFrequency
- RFmxSpecAn_CfgReferenceLevel
- RFmxSpecAn_AutoLevel
- RFmxSpecAn_CfgExternalAttenuation
- Trigger
- RFmxSpecAn_SendSoftwareEdgeTrigger
- RFmxSpecAn_CfgFrequencyReference
- RFmxSpecAn_CfgRFAttenuation
- RFmxSpecAn_CfgMechanicalAttenuation
int32 __stdcall RFmxSpecAn_CfgRF (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 centerFrequency, float64 referenceLevel, float64 externalAttenuation);
Configures the RF properties of the signal specified by the selector string.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
centerFrequency | float64 | Specifies the carrier frequency, in Hz, of the RF signal that needs to be acquired. The signal analyzer tunes to this frequency. |
referenceLevel | float64 | Specifies the reference level which represents the maximum expected power of the RF input signal. This value is configured in dBm for RF devices and as Vpk-pk for baseband devices. The default of this property is hardware dependent. |
externalAttenuation | float64 | Specifies the attenuation, in dB, of a switch (or cable) connected to the RF IN connector of the signal analyzer. For more information about attenuation, refer to the Attenuation and Signal Levels topic for your device in the NI RF Vector Signal Analyzers Help. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_CfgFrequency (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 centerFrequency);
Configures the expected carrier frequency of the RF signal to acquire. The signal analyzer tunes to this frequency.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
centerFrequency | float64 | Specifies the carrier frequency, in Hz, of the RF signal that needs to be acquired. The signal analyzer tunes to this frequency. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_CfgReferenceLevel (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 referenceLevel);
Configures the reference level, which represents the maximum expected power of an RF input signal.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
referenceLevel | float64 | Specifies the reference level which represents the maximum expected power of the RF input signal. This value is configured in dBm for RF devices and as Vpk-pk for baseband devices. The default of this property is hardware dependent. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_AutoLevel (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 bandwidth, float64 measurementInterval, float64 *referenceLevel);
Examines the incoming signal to calculate the peak power level and sets it as the value of the RFMXSPECAN_ATTR_REFERENCE_LEVEL) attribute. Use this function to help calculate an approximate setting for the reference level.
The RFmxSpecAn_AutoLevel function does the following:
- Resets the mixer level, mixer level offset, and IF output power offset.
- Sets the starting reference level to the maximum reference level supported by the device based on the current RF attenuation, mechanical attenuation and preamp enabled settings.
- Iterates to adjust the reference level based on the input signal peak power.
- Uses immediate triggering and restores the trigger settings back to user setting after completing execution.
When using PXIe-5663, 5665, or 5668 devices, NI recommends that you set an appropriate value for mechanical attenuation before calling the RFmxSpecAn_AutoLevel function. Setting an appropriate value for mechanical attenuation reduces the number of times the attenuator settings are changed by this function, thus reducing wear and tear, and maximizing the life time of the attenuator. You can also specify the starting reference level using the RFMXSPECAN_ATTR_AUTO_LEVEL_INITIAL_REFERENCE_LEVEL) attribute.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
bandwidth | float64 | Specifies the bandwidth, in Hz, of the signal to be analyzed. |
measurementInterval | float64 | Specifies the acquisition length. Use this value to compute the number of samples to acquire from the signal analyzer. This value is expressed in seconds. Auto Level VI does not use any trigger for acquisition. It ignores the user-configured trigger properties. NI recommends that you set a sufficiently high measurement interval to ensure that the acquired waveform is at least as long as one period of the signal. |
Output | ||
Name | Type | Description |
referenceLevel | float64* | Returns the estimated peak power level of the input signal. This value is expressed in dBm for RF devices and as Vpk-pk for baseband devices. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_CfgExternalAttenuation (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 externalAttenuation);
Specifies the attenuation of a switch (or cable) connected to the RF IN connector of the signal analyzer.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
externalAttenuation | float64 | Specifies the attenuation, in dB, of a switch (or cable) connected to the RF IN connector of the signal analyzer. For more information about attenuation, refer to the Attenuation and Signal Levels topic for your device in the NI RF Vector Signal Analyzers Help. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_CfgIQPowerEdgeTrigger (niRFmxInstrHandle instrumentHandle, char selectorString[], char IQPowerEdgeSource[], float64 IQPowerEdgeLevel, int32 IQPowerEdgeSlope, float64 triggerDelay, int32 triggerMinQuietTimeMode, float64 triggerMinQuietTimeDuration, int32 enableTrigger);
Configures the device to wait for the complex power of the I/Q data to cross the specified threshold and then marks a reference point within the record. To trigger on bursty signals, specify a minimum quiet time, which ensures that the trigger does not occur in the middle of the burst signal. The quiet time must be set to a value smaller than the time between bursts, but large enough to ignore power changes within a burst.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
IQPowerEdgeSource | char[] | Specifies the channel from which the device monitors the trigger. The default of this attribute is hardware dependent. |
IQPowerEdgeLevel | float64 | Specifies the power level at which the device triggers. This value is expressed in dB when you set the IQPowerEdgeLevelType parameter to RFMXSPECAN_VAL_IQ_POWER_EDGE_TRIGGER_LEVEL_TYPE_RELATIVE and is expressed in dBm when you set the IQPowerEdgeLevelType parameter to RFMXSPECAN_VAL_IQ_POWER_EDGE_TRIGGER_LEVEL_TYPE_ABSOLUTE. The device asserts the trigger when the signal exceeds the level specified by the value of this parameter, taking into consideration the specified slope. The default of this attribute is hardware dependent. |
IQPowerEdgeSlope | int32 | Specifies whether the device asserts the trigger when the signal power is rising or when it is falling. The device asserts the trigger when the signal power exceeds the specified level with the slope you specify. |
RFMXSPECAN_VAL_IQ_POWER_EDGE_RISING_SLOPE (0) | The trigger asserts when the signal power is rising. |
---|---|
RFMXSPECAN_VAL_IQ_POWER_EDGE_FALLING_SLOPE (1) | The trigger asserts when the signal power is falling. |
triggerDelay | float64 | Specifies the trigger delay time, in seconds. |
triggerMinQuietTimeMode | int32 | Specifies whether the measurement computes the minimum quiet time used for triggering. |
RFMXSPECAN_VAL_TRIGGER_MINIMUM_QUIET_TIME_MODE_MANUAL (0) | The minimum quiet time used for triggering is the value of the triggerMinQuietTimeDuration parameter. |
---|---|
RFMXSPECAN_VAL_TRIGGER_MINIMUM_QUIET_TIME_MODE_AUTO (1) | The measurement computes the minimum quiet time used for triggering. |
triggerMinQuietTimeDuration | float64 | Specifies the duration, in seconds, for which the signal must be quiet before the signal analyzer arms the I/Q Power Edge trigger. If you set the IQPowerEdgeSlope parameter to RFMXSPECAN_VAL_IQ_POWER_EDGE_RISING_SLOPE, the signal is quiet when it is below the trigger level. If you set the IQPowerEdgeSlope parameter to RFMXSPECAN_VAL_IQ_POWER_EDGE_FALLING_SLOPE, the signal is quiet when it is above the trigger level. |
enableTrigger | int32 | Specifies whether to enable the trigger. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_CfgSoftwareEdgeTrigger (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 triggerDelay, int32 enableTrigger);
Configures the device to wait for a software trigger and then marks a reference point within the record.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
triggerDelay | float64 | Specifies the trigger delay time, in seconds. |
enableTrigger | int32 | Specifies whether to enable the trigger. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_CfgDigitalEdgeTrigger (niRFmxInstrHandle instrumentHandle, char selectorString[], char digitalEdgeSource[], int32 digitalEdge, float64 triggerDelay, int32 enableTrigger);
Configures the device to wait for a digital edge trigger and then marks a reference point within the record. Spectral measurements are sometimes implemented with multiple acquisitions and therefore will require that digital triggers are sent for each acquisition. Multiple factors, including the desired span versus the realtime bandwidth of the hardware, affect the number of acquisitions. RFmx recommends repeating the generation until the measurement is completed in order to ensure that all the acquisitions are triggered.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
digitalEdgeSource | char[] | Specifies the source terminal for the digital edge trigger. The default of this attribute is hardware dependent. |
RFMXSPECAN_VAL_PFI0_STR (PFI0) | The trigger is received on PFI 0. |
---|---|
RFMXSPECAN_VAL_PFI1_STR (PFI1) | The trigger is received on PFI 1. |
RFMXSPECAN_VAL_PXI_TRIG0_STR (PXI_Trig0) | The trigger is received on PXI trigger line 0. |
RFMXSPECAN_VAL_PXI_TRIG1_STR (PXI_Trig1) | The trigger is received on PXI trigger line 1. |
RFMXSPECAN_VAL_PXI_TRIG2_STR (PXI_Trig2) | The trigger is received on PXI trigger line 2. |
RFMXSPECAN_VAL_PXI_TRIG3_STR (PXI_Trig3) | The trigger is received on PXI trigger line 3. |
RFMXSPECAN_VAL_PXI_TRIG4_STR (PXI_Trig4) | The trigger is received on PXI trigger line 4. |
RFMXSPECAN_VAL_PXI_TRIG5_STR (PXI_Trig5) | The trigger is received on PXI trigger line 5. |
RFMXSPECAN_VAL_PXI_TRIG6_STR (PXI_Trig6) | The trigger is received on PXI trigger line 6. |
RFMXSPECAN_VAL_PXI_TRIG7_STR (PXI_Trig7) | The trigger is received on PXI trigger line 7. |
RFMXSPECAN_VAL_PXI_STAR_STR (PXI_STAR) | The trigger is received on the PXI star trigger line. |
RFMXSPECAN_VAL_PXIE_DSTARB_STR (PXIe_DStarB) | The trigger is received on the PXIe DStar B trigger line. |
RFMXSPECAN_VAL_TIMER_EVENT_STR (TimerEvent) | The trigger is received from the timer event. |
digitalEdge | int32 | Specifies the trigger edge to detect. |
RFMXSPECAN_VAL_DIGITAL_EDGE_RISING_EDGE (0) | The trigger asserts on the rising edge of the signal. |
---|---|
RFMXSPECAN_VAL_DIGITAL_EDGE_FALLING_EDGE (1) | The trigger asserts on the falling edge of the signal. |
triggerDelay | float64 | Specifies the trigger delay time, in seconds. |
enableTrigger | int32 | Specifies whether to enable the trigger. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_DisableTrigger (niRFmxInstrHandle instrumentHandle, char selectorString[]);
Configures the device to not wait for a trigger to mark a reference point within a record. This function defines the signal triggering as immediate.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SendSoftwareEdgeTrigger (niRFmxInstrHandle instrumentHandle);
Sends a trigger to the device when you use the RFmxSpecAn Trigger functions to choose a software version of a trigger, and the device is waiting for the trigger to be sent. You can also use this function to override a hardware trigger.
This function returns an error in the following situations:
- You configure an invalid trigger.
- You have not previously called the RFmxSpecAn_Initiate) function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_CfgFrequencyReference (niRFmxInstrHandle instrumentHandle, char channelName[], char frequencyReferenceSource[], float64 frequencyReferenceFrequency);
Configures the Reference Clock and the frequency reference source.
This function is a wrapper over the RFmx Instruments API, and calls the RFmxInstr_CfgFrequencyReference) function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
channelName | char[] | Set this parameter to "" (empty string) or NULL. |
frequencyReferenceSource | char[] | Specifies the frequency reference source. |
RFMXSPECAN_VAL_ONBOARD_CLOCK_STR ("Onboard Clock") | PXIe-5663/5663E: The RFmx driver locks the PXIe-5663/5663E to the PXIe-5652 LO source onboard clock. Connect the REF OUT2 connector (if it exists) on the PXIe-5652 to the PXIe-5622 CLK IN terminal. On versions of the PXIe-5663/5663E that lack a REF OUT2 connector on the PXIe-5652, connect the REF IN/OUT connector on the PXIe-5652 to the PXIe-5622 CLK IN terminal. PXIe-5665: The RFmx driver locks the PXIe-5665 to the PXIe-5653 LO source onboard clock. Connect the 100 MHz REF OUT terminal on the PXIe-5653 to the PXIe-5622 CLK IN terminal. PXIe-5644R/5645R/5646R, PXIe-5840: The RFmx driver locks the device to its onboard clock. |
---|---|
RFMXSPECAN_VAL_REF_IN_STR ("RefIn") | PXIe-5663/5663E: Connect the external signal to the PXIe-5652 REF IN/OUT connector. Connect the REF OUT2 connector (if it exists) on the PXIe-5652 to the PXIe-5622 CLK IN terminal. PXIe-5665: Connect the external signal to the PXIe-5653 REF IN connector. Connect the 100 MHz REF OUT terminal on the PXIe-5653 to the PXIe-5622 CLK IN connector. If your external clock signal frequency is set to a frequency other than 10 MHz, set the frequencyReferenceFrequency parameter according to the frequency of your external clock signal. PXIe-5644R/5645R/5646R, PXIe-5840: The RFmx driver locks the device to the signal at the external REF IN connector. |
RFMXSPECAN_VAL_PXI_CLK_STR ("PXI_Clk") | PXIe-5644R/5645R/5646R, PXIe-5663/5663E/5665, PXIe-5840: The RFmx driver locks the PXIe-5644R/5645R/5646R, PXIe-5663/5663E/5665 to the PXI backplane clock. |
RFMXSPECAN_VAL_CLK_IN_STR ("ClkIn") | PXIe-5663/5663E: The RFmx driver locks the PXIe-5663/5663E to an external 10 MHz signal. Connect the external signal to the PXIe-5622 CLK IN connector, and connect the PXIe-5622 CLK OUT connector to the FREQ REF IN connector on the PXIe-5652. PXIe-5665: The RFmx driver locks the PXIe-5665 to an external 100 MHz signal. Connect the external signal to the PXIe-5622 CLK IN connector, and connect the PXIe-5622 CLK OUT connector to the REF IN connector on the PXIe-5653. Set the frequencyReferenceFrequency parameter to 100 MHz. PXIe-5644R/5645R/5646R, PXIe-5840: This configuration does not apply to the PXIe-5644R/5645R/5646R. |
frequencyReferenceFrequency | float64 | Specifies the Reference Clock rate, in Hz, when the frequencyReferenceSource parameter is set to RFMXSPECAN_VAL_CLK_IN_STR or RFMXSPECAN_VAL_REF_IN_STR. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_CfgRFAttenuation (niRFmxInstrHandle instrumentHandle, char channelName[], int32 RFAttenuationAuto, float64 RFAttenuationValue);
Configures the nominal attenuation and the RFmx driver setting.
This function is a wrapper over the RFmx Instruments API, and calls the RFmxInstr_CfgRFAttenuation) function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
channelName | char[] | Set this parameter to "" (empty string) or NULL. |
RFAttenuationAuto | int32 | Specifies whether the RFmx driver computes the RF attenuation. |
RFMXSPECAN_VAL_RF_ATTENUATION_AUTO_FALSE (0) | Specifies that the RFmx driver uses the value configured using the rfAttenuationValue parameter. |
---|---|
RFMXSPECAN_VAL_RF_ATTENUATION_AUTO_TRUE (1) | Specifies that the RFmx driver computes the RF attenuation automatically. |
RFAttenuationValue | float64 | Specifies the nominal attenuation setting, in dB, for all attenuators before the first mixer in the RF signal chain when the rfAttenuationAuto parameter is set to RFMXSPECAN_VAL_RF_ATTENUATION_AUTO_FALSE. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_CfgMechanicalAttenuation (niRFmxInstrHandle instrumentHandle, char channelName[], int32 mechanicalAttenuationAuto, float64 mechanicalAttenuationValue);
Configures the mechanical attenuation and the RFmx driver attenuation hardware settings.
This function is a wrapper over the RFmx Instruments API, and calls the RFmxInstr_CfgMechanicalAttenuation) function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
channelName | char[] | Set this parameter to "" (empty string) or NULL. |
mechanicalAttenuationAuto | int32 | Specifies whether the RFmx driver automatically chooses an attenuation setting based on the hardware settings. |
RFMXSPECAN_VAL_MECHANICAL_ATTENUATION_AUTO_FALSE (0) | Specifies that the RFmx driver uses the value configured in the mechanicalAttenuationValue parameter. |
---|---|
RFMXSPECAN_VAL_MECHANICAL_ATTENUATION_AUTO_TRUE (1) | Specifies that the measurement computes the mechanical attenuation. |
mechanicalAttenuationValue | float64 | Specifies the level of mechanical attenuation, in dB, for the RF path when the mechanicalAttenuationAuto is set to RFMXSPECAN_VAL_MECHANICAL_ATTENUATION_AUTO_FALSE. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
Creating and Setting Up a gRPC Server
Session Utilities API Reference
gRPC API Differences From C API
Sharing Driver Sessions Between Clients
C API Docs
NI-DAQmx
- gRPC API Differences From C API
- Task Configuration And Control
- Channel Configuration And Creation
- Timing
- Triggering
- Read Functions
- Write Functions
- Export Hardware Signals
- Scale Configuration
- Internal Buffer Configuration
- Advanced Functions
- System Configuration
- Error Handling
- Buffer Attributes
- Calibration Info Attributes
- Channel Attributes
- Device Attributes
- Export Signal Attributes
- Persisted Channel Attributes
- Persisted Scale Attributes
- Persisted Task Attributes
- Physical Channel Attributes
- Read Attributes
- Scale Attributes
- System Attributes
- Task Attributes
- Timing Attributes
- Trigger Attributes
- Watchdog Attributes
- Write Attributes
NI-DCPOWER
- Setup Functions
- Configure Functions
- Measurement Functions
- Control Functions
- Trigger And Event
- Attribute Functions
- Query Functions
- Calibration Functions
- Utility Functions
- Supported Device
- Source Attributes
- Transient Attributes
- Voltage Attributes
- Current Attributes
- Pulse Voltage Attributes
- Pulse Current Attributes
- Cutoff Attributes
- Measurement Attributes
- Trigger Attributes Functions
- Event Attributes
- Advanced Attributes
- Inherent Ivi Attributes
- Supported Device Attributes
NI-DIGITAL PATTERN DRIVER
- Init And Close Functions
- Session Locking Functions
- Utility Functions
- Error Handling Functions
- Calibration Functions
- Attributes Functions
- Pin Map Functions
- Low Level Functions
- Low Level Action Functions
- Pin Control Functions
- Static IO Functions
- Clock Generator Functions
- Levels And Timing Functions
- TDR Functions
- PPMU Configuration Functions
- DC Voltage Functions
- DC Current Functions
- PPMU Action Functions
- Pattern Configuration Functions
- Pattern Action Functions
- History Ram Functions
- Source Memory Functions
- Capture Memory Functions
- Triggers And Events Functions
- Conditional Jump Trigger Functions
- Sequencer Flag Functions
- Sequencer Register Functions
- Match Fail Combination Functions
- Pattern Results Functions
- Sort Results Functions
- Frequency Measurement Functions
- IVI Inherent Attributes
- Specific Driver Information Attributes, Read Only
- Driver Setup Information Attributes
- Device Attributes
- Pin Control Attributes
- Level Configuration Attributes
- Trigger Configuration Attributes
- PPMU Attributes
- Patterns Attributes
- Pattern Opcode Event Attributes
- Timing Offset Attributes
- Keep Alive Attributes
- Frequency Measurement Attributes
- Clock Generator Attributes
- History RAM
- Synchronization Attributes
- TDR Endpoint Termination Attributes
NI-FGEN
- Setup Functions
- Configuration Functions
- Standard Output Functions
- Arbitrary Waveform Output Functions
- Arbitrary Sequence Output Functions
- Incremental Waveform Write Functions
- Configure Clock Functions
- Trigger And Syncronizations Functions
- 5404 Routing Functions
- Script Output Functions
- Configure Onboard Signal Processing Functions
- Configure Peer To Peer Functions
- Attribute Functions
- Waveform Control Functions
- Error Functions
- Output Attributes
- Arbitrary Waveform Attributes
- Data Transfer Attributes
- Onboard Signal Processing Attributes
- Peer To Peer Attributes
- Standard Function Attributes
- Clock Attributes
- Event Attributes
- Triggering Attributes
- Instrument Specific Attributes
- Inherent IVI Attributes
- 5401 5411 5431
NI-RFmx Bluetooth
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Fetch Results Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Packet Attributes
- Auto Detect Signal Attributes
- Modacc Attributes
- ACP Attributes
- Twenty dB Attributes
- Frequency Range Attributes
- TXP Attributes
- Advanced Attributes
NI-RFmx NR
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attributes Functions
- Fetch Results Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Signal Detection Attributes
- Component Carrier Attributes
- List Attributes
- Modacc Attributes
- ACP Attributes
- CHP Attributes
- OBW Attributes
- SEM Attributes
- TXP Attributes
- Pvt Attributes
- Advanced Attributes
NI-RFmx LTE
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Ch Configuration Functions
- NB IoT Configuration Functions
- ModAcc Configuration Functions
- ACP Configuration Functions
- CHP Configuration Functions
- OBW Configuration Functions
- SEM Configuration Functions
- PVT Configuration Functions
- SlotPhase Configuration Functions
- SlotPower Configuration Functions
- Set And Get Attribute Functions
- ModAcc Fetch Functions
- ACP Fetch Functions
- CHP Fetch Functions
- OBW Fetch Functions
- SEM Fetch Functions
- PVT Fetch Functions
- SlotPhase Fetch Functions
- SlotPower Fetch Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Component Carrier Attributes
- ModAcc Attributes
- ACP Attributes
- CHP Attributes
- OBW Attributes
- SEM Attributes
- PVT Attributes
- SlotPhase Attributes
- SlotPower Attributes
- Advanced Attributes
NI-RFmx SpecAn
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Read Functions
- Fetch Functions
- Utility Functions
- Marker Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- ACP Attributes
- Cdf Attributes
- CHP Attributes
- Fcnt Attributes
- Harm Attributes
- OBW Attributes
- SEM Attributes
- Spectrum Attributes
- Spur Attributes
- TXP Attributes
- AMPM Attributes
- Dpd Attributes
- IQ Attributes
- IM Attributes
- NF Attributes
- Phasenoise Attributes
- PAVT Attributes
- Advanced Attributes
NI-RFmx WLAN
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Fetch DSSS ModAcc Functions
- Fetch OFDM ModAcc Functions
- Fetch SEM Functions
- Fetch TXP Functions
- Fetch PowerRamp Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- OFDM Attributes
- Auto Detect Signal Attributes
- DSSS ModAcc Attributes
- OFDM ModAcc Attributes
- SEM Attributes
- TXP Attributes
- PowerRamp Attributes
- Advanced Attributes
NI-RFSA
- General Functions
- Configuration Functions
- Acquisition Functions
- Utility Functions
- Calibration Functions
- General Attributes
- Vertical Attributes
- Signal Path Attributes
- Acquisition Attributes
- Acquisition Attributes
- Triggers Attributes
- Events Attributes
- Device Characteristics Attributes
- Peer To Peer Streaming Attributes
- Configuration List Attributes
- Inherent IVI Properties Attributes
- De-embedding Attributes
- Self Calibration Attributes
- Factory Calibration Attributes
- External Alignment Attributes
- Device Specific Attributes
NI-RFSG
- General Functions
- Generation Configuration
- Utility Functions
- Calibration Functions
- Arb Attributes
- Clock Attributes
- Configuration List Attributes
- De-embedding Attributes
- Device Characteristics Attributes
- Device Specific Attributes
- Events Attributes
- External Calibration Attributes
- Inherent IVI Attributes Attributes
- IQ Impairment Attributes
- Load Configurations Attributes
- Modulation Attributes
- Obsolete Attributes
- Peer To Peer Attributes
- RF Attributes
- Self Calibration Attributes
- Triggers Attributes
NI-SCOPE
- Setup Functions
- Configure Functions
- Attribute Functions
- Acquisition Functions
- Measurement Functions
- Calibrate Functions
- Utility Funcitons
- Error Handling Functions
- IVI Compliance Or Obsolete Functions
- Vertical Attributes
- Horizontal Attributes
- Trigger Attributes
- Clocking Attributes
- Synchronization Attributes
- Acquisition Attributes
- Waveform Measurements Attributes
- Onboard Signal Processing Attributes
- Peer To Peer Streaming Attributes
- Device Attributes
- IVI Or Obsolete Attributes
- Instrument Capabilities Attributes
- If Digitizer Attributes
NI-XNET
- gRPC API differences from C APIs
- General Functions
- Cluster Properties
- Database Properties
- Device Properties
- ECU Properties
- Frame Properties
- Interface Properties
- LIN Schedule Entry Properties
- LIN Schedule Properties
- PDU Properties
- Session Ethernet Properties
- Session Frame Properties
- Session Interface Properties
- Session Properties
- Session SAE J1939 Properties
- Signal Properties
- Subframe Properties
- System Properties
- IP-Stack Functions
- Socket Options
- Socket Functions