-
Notifications
You must be signed in to change notification settings - Fork 51
NI RFmx SpecAn IM Configuration Functions
- RFmxSpecAn_IMCfgFrequencyDefinition
- RFmxSpecAn_IMCfgFundamentalTones
- RFmxSpecAn_IMCfgAutoIntermodsSetup
- RFmxSpecAn_IMCfgMeasurementMethod
- RFmxSpecAn_IMCfgNumberOfIntermods
- RFmxSpecAn_IMCfgIntermod
- RFmxSpecAn_IMCfgRBWFilter
- RFmxSpecAn_IMCfgSweepTime
- RFmxSpecAn_IMCfgAveraging
- RFmxSpecAn_IMCfgFFT
- Array Apis
int32 __stdcall RFmxSpecAn_IMCfgFrequencyDefinition (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 frequencyDefinition);
Configures whether you can specify the tones and intermod frequencies as either relative to the RF center frequency or as absolute frequencies.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
frequencyDefinition | int32 | Specifies whether you can specify the tones and intermod frequencies as either relative to the RF center frequency or as absolute frequencies. |
RFMXSPECAN_VAL_IM_FREQUENCY_DEFINITION_RELATIVE (0) | The tone and intermod frequencies are relative to the RF center frequency. |
---|---|
RFMXSPECAN_VAL_IM_FREQUENCY_DEFINITION_ABSOLUTE (1) | The tone and intermod frequencies are absolute frequencies. The measurement ignores the RF center frequency. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_IMCfgFundamentalTones (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 lowerToneFrequency, float64 upperToneFrequency);
Configures the frequencies of the upper and lower frequencies in a two-tone input signal.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
lowerToneFrequency | float64 | Specifies the frequency of the tone that has a lower frequency among the two tones in the input signal. This value is expressed in Hz. |
upperToneFrequency | float64 | Specifies the frequency of the tone that has a higher frequency among the two tones in the input signal. This value is expressed in Hz. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_IMCfgAutoIntermodsSetup (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 autoIntermodsSetupEnabled, int32 maximumIntermodOrder);
Configures whether the measurement computes the intermod frequencies or uses manually specified frequencies.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
autoIntermodsSetupEnabled | int32 | Specifies whether the measurement computes the intermod frequencies or uses manually specified frequencies. |
RFMXSPECAN_VAL_IM_AUTO_INTERMODS_SETUP_ENABLED_FALSE (0) | The measurement uses the values that you specify for the RFMXSpecAn_ATTR_IM_LOWER_INTERMOD_FREQUENCY) and RFMXSpecAn_ATTR_IM_UPPER_INTERMOD_FREQUENCY) attributes. |
---|---|
RFMXSPECAN_VAL_IM_AUTO_INTERMODS_SETUP_ENABLED_TRUE (1) | The measurement computes intermod frequencies. The number of intermods to measure is based on the value of the maximumIntermodOrder parameter. |
maximumIntermodOrder | int32 | Specifies the order up to which the RFmx driver measures odd order intermodulation products when you set the autoIntermodsSetupEnabled parameter to RFMXSPECAN_VAL_IM_AUTO_INTERMODS_SETUP_ENABLED_TRUE. The lower and upper intermodulation products are measured for each order. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_IMCfgMeasurementMethod (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 measurementMethod);
Configures the method for performing the IM measurement.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
measurementMethod | int32 | Specifies the method for performing the IM measurement. |
RFMXSPECAN_VAL_IM_MEASUREMENT_METHOD_NORMAL (0) | The IM measurement acquires the spectrum using the same signal analyzer settings across frequency bands. Use this method when the fundamental tone separation is not large. **Supported devices:**PXIe-5644/5645/5646/5840/5841/5830/5831/5832, PXIe-5663/5665/5668. |
---|---|
RFMXSPECAN_VAL_IM_MEASUREMENT_METHOD_DYNAMIC_RANGE (1) | The IM measurement acquires a segmented spectrum using the signal analyzer specific optimizations for different frequency bands. The spectrum is acquired in segments, one per tone or intermod frequency to be measured. The span of each acquired spectral segment is equal to the frequency separation between the two input tones, or 1 MHz, whichever is smaller. Use this method to configure the IM measurement and the signal analyzer for maximum dynamic range instead of measurement speed. **Supported devices:**PXIe-5665/5668 |
RFMXSPECAN_VAL_IM_MEASUREMENT_METHOD_SEGMENTED (2) | Similar to the dynamicRange method, this method also acquires a segmented spectrum, except that signal analyzer is not explicitly configured to provide maximum dynamic range. Use this method when the frequency separation of the two input tones is large and the measurement accuracy can be traded off for measurement speed. **Supported devices:**PXIe-5644/5645/5646/5840/5841/5830/5831/5832, PXIe-5663/5665/5668 |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_IMCfgNumberOfIntermods (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 numberOfIntermods);
Configures the number of intermods to measure when you set the RFMXSpecAn_ATTR_IM_AUTO_INTERMODS_SETUP_ENABLED) attribute to RFMXSPECAN_VAL_IM_AUTO_INTERMODS_SETUP_ENABLED_FALSE.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
numberOfIntermods | int32 | Specifies the number of intermods to measure when you set the RFMXSpecAn_ATTR_IM_AUTO_INTERMODS_SETUP_ENABLED attribute to RFMXSPECAN_VAL_IM_AUTO_INTERMODS_SETUP_ENABLED_FALSE. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_IMCfgIntermod (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 intermodOrder, float64 lowerIntermodFrequency, float64 upperIntermodFrequency, int32 intermodSide, int32 intermodEnabled);
Configures the intermod order, intermod side, lower intermod frequency, and upper intermod frequency when you set the RFMXSpecAn_ATTR_IM_AUTO_INTERMODS_SETUP_ENABLED) attribute to RFMXSPECAN_VAL_IM_AUTO_INTERMODS_SETUP_ENABLED_FALSE. Use "intermod<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name and intermod number. If you do not specify the signal name, the default signal instance is used. Example: "intermod0" "signal::sig1/intermod0" You can use the RFmxSpecAn_BuildIntermodString) function to build the selector string. |
intermodOrder | int32 | Specifies the order of the intermod. |
lowerIntermodFrequency | float64 | Specifies the frequency of the lower intermodulation product. This value is expressed in Hz. |
upperIntermodFrequency | float64 | Specifies the frequency of the upper intermodulation product. This value is expressed in Hz. |
intermodSide | int32 | Specifies whether to measure intermodulation products corresponding to both lower and upper intermod frequencies or either one of them. |
RFMXSPECAN_VAL_IM_INTERMOD_SIDE_LOWER (0) | Measures the intermodulation product corresponding to the lowerIntermodFrequency parameter. |
---|---|
RFMXSPECAN_VAL_IM_INTERMOD_SIDE_UPPER (1) | Measures the intermodulation product corresponding to the upperIntermodFrequency parameter. |
RFMXSPECAN_VAL_IM_INTERMOD_SIDE_BOTH (2) | Measures the intermodulation product corresponding to both lowerIntermodFrequency and upperIntermodFrequency parameters. |
intermodEnabled | int32 | Specifies whether to enable an intermod for the IM measurement. |
RFMXSPECAN_VAL_IM_INTERMOD_ENABLED_FALSE (0) | Disables an intermod for the IM measurement. The results for the disabled intermods are displayed as NaN. |
---|---|
RFMXSPECAN_VAL_IM_INTERMOD_ENABLED_TRUE (1) | Enables an intermod for the IM measurement. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_IMCfgRBWFilter (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 RBWAuto, float64 RBW, int32 RBWFilterType);
Configures the RBW filter.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
RBWAuto | int32 | Specifies whether the measurement computes the RBW. Refer to the RBW and Sweep Time section in the Spectral Measurements) topic for more details on RBW and sweep time. |
RFMXSPECAN_VAL_IM_RBW_FILTER_AUTO_BANDWIDTH_FALSE (0) | The measurement uses the RBW that you specify in the RBW parameter. |
---|---|
RFMXSPECAN_VAL_IM_RBW_FILTER_AUTO_BANDWIDTH_TRUE (1) | The measurement computes the RBW. |
RBW | float64 | Specifies the bandwidth of the RBW filter used to sweep the acquired signal, when you set the RBWAuto parameter to RFMXSPECAN_VAL_IM_RBW_FILTER_AUTO_BANDWIDTH_FALSE. This value is expressed in Hz. |
RBWFilterType | int32 | Specifies the response of the digital RBW filter. |
RFMXSPECAN_VAL_IM_RBW_FILTER_TYPE_FFT_BASED (0) | No RBW filtering is performed. |
---|---|
RFMXSPECAN_VAL_IM_RBW_FILTER_TYPE_GAUSSIAN (1) | An RBW filter with a Gaussian response is applied. |
RFMXSPECAN_VAL_IM_RBW_FILTER_TYPE_FLAT (2) | An RBW filter with a flat response is applied. |
RFMXSPECAN_VAL_IM_RBW_FILTER_TYPE_SYNCH_TUNED_4 (3) | An RBW filter with a 4-pole synchronously-tuned response is applied. |
RFMXSPECAN_VAL_IM_RBW_FILTER_TYPE_SYNCH_TUNED_5 (4) | An RBW filter with a 5-pole synchronously-tuned response is applied. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_IMCfgSweepTime (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 sweepTimeAuto, float64 sweepTimeInterval);
Configures the sweep time.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
sweepTimeAuto | int32 | Specifies whether the measurement computes the sweep time. |
RFMXSPECAN_VAL_IM_SWEEP_TIME_AUTO_FALSE (0) | The measurement uses the sweep time that you specify in the sweepTimeInterval parameter. |
---|---|
RFMXSPECAN_VAL_IM_SWEEP_TIME_AUTO_TRUE (1) | The measurement computes the sweep time based on the value of the RFMXSpecAn_ATTR_IM_RBW_FILTER_BANDWIDTH) attribute. |
sweepTimeInterval | float64 | Specifies the sweep time, in seconds, when you set the sweepTimeAuto parameter to RFMXSPECAN_VAL_IM_SWEEP_TIME_AUTO_FALSE. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_IMCfgAveraging (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 averagingEnabled, int32 averagingCount, int32 averagingType);
Configures averaging for the IM measurement.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
averagingEnabled | int32 | Specifies whether to enable averaging for the measurement. |
RFMXSPECAN_VAL_IM_AVERAGING_ENABLED_FALSE (0) | The measurement is performed on a single acquisition. |
---|---|
RFMXSPECAN_VAL_IM_AVERAGING_ENABLED_TRUE (1) | The measurement uses the value of the averagingCount parameter to calculate the number of acquisitions over which the measurement is averaged. |
averagingCount | int32 | Specifies the number of acquisitions used for averaging when you set the averagingEnabled parameter to RFMXSPECAN_VAL_IM_AVERAGING_ENABLED_TRUE. |
averagingType | int32 | Specifies the averaging type for averaging the power over multiple acquisitions. The averaged power trace is used for the measurement. Refer to the Averaging section of the Spectrum) topic for more information about averaging types. |
RFMXSPECAN_VAL_IM_AVERAGING_TYPE_RMS (0) | The power trace is linearly averaged. RMS averaging reduces signal fluctuations but not the noise floor. |
---|---|
RFMXSPECAN_VAL_IM_AVERAGING_TYPE_LOG (1) | The power trace is averaged in a logarithmic scale. |
RFMXSPECAN_VAL_IM_AVERAGING_TYPE_SCALAR (2) | The square root of the power trace is averaged. |
RFMXSPECAN_VAL_IM_AVERAGING_TYPE_MAXIMUM (3) | The peak power in the power trace at each sample instance is retained from one acquisition to the next. |
RFMXSPECAN_VAL_IM_AVERAGING_TYPE_MINIMUM (4) | The least power in the power trace at each sample instance is retained from one acquisition to the next. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_IMCfgFFT (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 FFTWindow, float64 FFTPadding);
Configures the window and FFT to obtain a spectrum for the IM measurement.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
FFTWindow | int32 | Specifies the FFT window type to use to reduce spectral leakage. Refer to the Window and FFT section of the Spectral Measurements) topic for more information about FFT window types. |
RFMXSPECAN_VAL_IM_FFT_WINDOW_NONE (0) | Analyzes transients for which duration is shorter than the window length. You can also use this window type to separate two tones with frequencies close to each other but with almost equal amplitudes. |
---|---|
RFMXSPECAN_VAL_IM_FFT_WINDOW_FLAT_TOP (1) | Measures single-tone amplitudes accurately. |
RFMXSPECAN_VAL_IM_FFT_WINDOW_HANNING (2) | Analyzes transients for which duration is longer than the window length. You can also use this window type to provide better frequency resolution for noise measurements. |
RFMXSPECAN_VAL_IM_FFT_WINDOW_HAMMING (3) | Analyzes closely-spaced sine waves. |
RFMXSPECAN_VAL_IM_FFT_WINDOW_GAUSSIAN (4) | Provides a balance of spectral leakage, frequency resolution, and amplitude attenuation. This windowing is useful for time-frequency analysis. |
RFMXSPECAN_VAL_IM_FFT_WINDOW_BLACKMAN (5) | Analyzes single tone because it has a low maximum side lobe level and a high side lobe roll-off rate. |
RFMXSPECAN_VAL_IM_FFT_WINDOW_BLACKMAN_HARRIS (6) | Useful as a general purpose window, having side lobe rejection greater than 90 dB and having a moderately wide main lobe. |
RFMXSPECAN_VAL_IM_FFT_WINDOW_KAISER_BESSEL (7) | Separates two tones with frequencies close to each other but with widely-differing amplitudes. |
FFTPadding | float64 | Specifies the factor by which the time-domain waveform is zero-padded before FFT. The FFT size is given by the following formula: waveform size * padding. This parameter is used only when the acquisition span is less than the device instantaneous bandwidth of the device. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_IMCfgIntermodArray (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 intermodOrder[], float64 lowerIntermodFrequency[], float64 upperIntermodFrequency[], int32 intermodSide[], int32 intermodEnabled[], int32 numberOfElements);
Configures the intermod order, intermod side, lower intermod frequency, and upper intermod frequency when you set the RFMXSPECAN_ATTR_IM_AUTO_INTERMODS_SETUP_ENABLED) attribute to RFMXSPECAN_VAL_IM_AUTO_INTERMODS_SETUP_ENABLED_FALSE.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
intermodOrder | int32[] | Specifies array of orders of the intermod. |
lowerIntermodFrequency | float64[] | Specifies an array of the frequencies of the lower intermodulation products. This value is expressed in Hz. |
upperIntermodFrequency | float64[] | Specifies an array of frequencies of the upper intermodulation products. This value is expressed in Hz. |
intermodSide | int32[] | Specifies whether to measure intermodulation products corresponding to both lower and upper intermod frequencies or either one of them. |
RFMXSPECAN_VAL_IM_INTERMOD_SIDE_LOWER (0) | Measures the intermodulation product corresponding to the lowerIntermodFrequency parameter. |
---|---|
RFMXSPECAN_VAL_IM_INTERMOD_SIDE_UPPER (1) | Measures the intermodulation product corresponding to the upperIntermodFrequency parameter. |
RFMXSPECAN_VAL_IM_INTERMOD_SIDE_BOTH (2) | Measures the intermodulation product corresponding to the lowerIntermodFrequency and upperIntermodFrequency parameters. |
intermodEnabled | int32[] | Specifies whether to enable an intermod for the IM measurement. |
RFMXSPECAN_VAL_IM_INTERMOD_ENABLED_FALSE (0) | Disables the intermod for the IM measurement. The results for the disabled intermods are displayed as NaN. |
---|---|
RFMXSPECAN_VAL_IM_INTERMOD_ENABLED_TRUE (1) | Enables the intermod for the IM measurement. |
numberOfElements | int32 | Specifies the number of elements in each array. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
Creating and Setting Up a gRPC Server
Session Utilities API Reference
gRPC API Differences From C API
Sharing Driver Sessions Between Clients
C API Docs
NI-DAQmx
- gRPC API Differences From C API
- Task Configuration And Control
- Channel Configuration And Creation
- Timing
- Triggering
- Read Functions
- Write Functions
- Export Hardware Signals
- Scale Configuration
- Internal Buffer Configuration
- Advanced Functions
- System Configuration
- Error Handling
- Buffer Attributes
- Calibration Info Attributes
- Channel Attributes
- Device Attributes
- Export Signal Attributes
- Persisted Channel Attributes
- Persisted Scale Attributes
- Persisted Task Attributes
- Physical Channel Attributes
- Read Attributes
- Scale Attributes
- System Attributes
- Task Attributes
- Timing Attributes
- Trigger Attributes
- Watchdog Attributes
- Write Attributes
NI-DCPOWER
- Setup Functions
- Configure Functions
- Measurement Functions
- Control Functions
- Trigger And Event
- Attribute Functions
- Query Functions
- Calibration Functions
- Utility Functions
- Supported Device
- Source Attributes
- Transient Attributes
- Voltage Attributes
- Current Attributes
- Pulse Voltage Attributes
- Pulse Current Attributes
- Cutoff Attributes
- Measurement Attributes
- Trigger Attributes Functions
- Event Attributes
- Advanced Attributes
- Inherent Ivi Attributes
- Supported Device Attributes
NI-DIGITAL PATTERN DRIVER
- Init And Close Functions
- Session Locking Functions
- Utility Functions
- Error Handling Functions
- Calibration Functions
- Attributes Functions
- Pin Map Functions
- Low Level Functions
- Low Level Action Functions
- Pin Control Functions
- Static IO Functions
- Clock Generator Functions
- Levels And Timing Functions
- TDR Functions
- PPMU Configuration Functions
- DC Voltage Functions
- DC Current Functions
- PPMU Action Functions
- Pattern Configuration Functions
- Pattern Action Functions
- History Ram Functions
- Source Memory Functions
- Capture Memory Functions
- Triggers And Events Functions
- Conditional Jump Trigger Functions
- Sequencer Flag Functions
- Sequencer Register Functions
- Match Fail Combination Functions
- Pattern Results Functions
- Sort Results Functions
- Frequency Measurement Functions
- IVI Inherent Attributes
- Specific Driver Information Attributes, Read Only
- Driver Setup Information Attributes
- Device Attributes
- Pin Control Attributes
- Level Configuration Attributes
- Trigger Configuration Attributes
- PPMU Attributes
- Patterns Attributes
- Pattern Opcode Event Attributes
- Timing Offset Attributes
- Keep Alive Attributes
- Frequency Measurement Attributes
- Clock Generator Attributes
- History RAM
- Synchronization Attributes
- TDR Endpoint Termination Attributes
NI-FGEN
- Setup Functions
- Configuration Functions
- Standard Output Functions
- Arbitrary Waveform Output Functions
- Arbitrary Sequence Output Functions
- Incremental Waveform Write Functions
- Configure Clock Functions
- Trigger And Syncronizations Functions
- 5404 Routing Functions
- Script Output Functions
- Configure Onboard Signal Processing Functions
- Configure Peer To Peer Functions
- Attribute Functions
- Waveform Control Functions
- Error Functions
- Output Attributes
- Arbitrary Waveform Attributes
- Data Transfer Attributes
- Onboard Signal Processing Attributes
- Peer To Peer Attributes
- Standard Function Attributes
- Clock Attributes
- Event Attributes
- Triggering Attributes
- Instrument Specific Attributes
- Inherent IVI Attributes
- 5401 5411 5431
NI-RFmx Bluetooth
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Fetch Results Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Packet Attributes
- Auto Detect Signal Attributes
- Modacc Attributes
- ACP Attributes
- Twenty dB Attributes
- Frequency Range Attributes
- TXP Attributes
- Advanced Attributes
NI-RFmx NR
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attributes Functions
- Fetch Results Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Signal Detection Attributes
- Component Carrier Attributes
- List Attributes
- Modacc Attributes
- ACP Attributes
- CHP Attributes
- OBW Attributes
- SEM Attributes
- TXP Attributes
- Pvt Attributes
- Advanced Attributes
NI-RFmx LTE
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Ch Configuration Functions
- NB IoT Configuration Functions
- ModAcc Configuration Functions
- ACP Configuration Functions
- CHP Configuration Functions
- OBW Configuration Functions
- SEM Configuration Functions
- PVT Configuration Functions
- SlotPhase Configuration Functions
- SlotPower Configuration Functions
- Set And Get Attribute Functions
- ModAcc Fetch Functions
- ACP Fetch Functions
- CHP Fetch Functions
- OBW Fetch Functions
- SEM Fetch Functions
- PVT Fetch Functions
- SlotPhase Fetch Functions
- SlotPower Fetch Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Component Carrier Attributes
- ModAcc Attributes
- ACP Attributes
- CHP Attributes
- OBW Attributes
- SEM Attributes
- PVT Attributes
- SlotPhase Attributes
- SlotPower Attributes
- Advanced Attributes
NI-RFmx SpecAn
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Read Functions
- Fetch Functions
- Utility Functions
- Marker Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- ACP Attributes
- Cdf Attributes
- CHP Attributes
- Fcnt Attributes
- Harm Attributes
- OBW Attributes
- SEM Attributes
- Spectrum Attributes
- Spur Attributes
- TXP Attributes
- AMPM Attributes
- Dpd Attributes
- IQ Attributes
- IM Attributes
- NF Attributes
- Phasenoise Attributes
- PAVT Attributes
- Advanced Attributes
NI-RFmx WLAN
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Fetch DSSS ModAcc Functions
- Fetch OFDM ModAcc Functions
- Fetch SEM Functions
- Fetch TXP Functions
- Fetch PowerRamp Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- OFDM Attributes
- Auto Detect Signal Attributes
- DSSS ModAcc Attributes
- OFDM ModAcc Attributes
- SEM Attributes
- TXP Attributes
- PowerRamp Attributes
- Advanced Attributes
NI-RFSA
- General Functions
- Configuration Functions
- Acquisition Functions
- Utility Functions
- Calibration Functions
- General Attributes
- Vertical Attributes
- Signal Path Attributes
- Acquisition Attributes
- Acquisition Attributes
- Triggers Attributes
- Events Attributes
- Device Characteristics Attributes
- Peer To Peer Streaming Attributes
- Configuration List Attributes
- Inherent IVI Properties Attributes
- De-embedding Attributes
- Self Calibration Attributes
- Factory Calibration Attributes
- External Alignment Attributes
- Device Specific Attributes
NI-RFSG
- General Functions
- Generation Configuration
- Utility Functions
- Calibration Functions
- Arb Attributes
- Clock Attributes
- Configuration List Attributes
- De-embedding Attributes
- Device Characteristics Attributes
- Device Specific Attributes
- Events Attributes
- External Calibration Attributes
- Inherent IVI Attributes Attributes
- IQ Impairment Attributes
- Load Configurations Attributes
- Modulation Attributes
- Obsolete Attributes
- Peer To Peer Attributes
- RF Attributes
- Self Calibration Attributes
- Triggers Attributes
NI-SCOPE
- Setup Functions
- Configure Functions
- Attribute Functions
- Acquisition Functions
- Measurement Functions
- Calibrate Functions
- Utility Funcitons
- Error Handling Functions
- IVI Compliance Or Obsolete Functions
- Vertical Attributes
- Horizontal Attributes
- Trigger Attributes
- Clocking Attributes
- Synchronization Attributes
- Acquisition Attributes
- Waveform Measurements Attributes
- Onboard Signal Processing Attributes
- Peer To Peer Streaming Attributes
- Device Attributes
- IVI Or Obsolete Attributes
- Instrument Capabilities Attributes
- If Digitizer Attributes
NI-XNET
- gRPC API differences from C APIs
- General Functions
- Cluster Properties
- Database Properties
- Device Properties
- ECU Properties
- Frame Properties
- Interface Properties
- LIN Schedule Entry Properties
- LIN Schedule Properties
- PDU Properties
- Session Ethernet Properties
- Session Frame Properties
- Session Interface Properties
- Session Properties
- Session SAE J1939 Properties
- Signal Properties
- Subframe Properties
- System Properties
- IP-Stack Functions
- Socket Options
- Socket Functions